APPENDIX C

PLANT ESTABLISHMENT PERIOD MEMORANDUM

Memorandum

Prepared by Nature Collective, Moffatt & Nichol, AECOM, Merkel & Associates, and Nordby Biological Consulting

То	Tim Stillinger, Nature Collective
Subject	San Elijo Lagoon Restoration Project Plant Establishment Period Memorandum
From	Cindy Kinkade, AECOM
Date	July 2021

Introduction

The San Elijo Lagoon Restoration Project has been implemented by Nature Collective, San Diego Association of Governments, and California Department of Transportation District 11 to enhance and restore the physical and biological functions and services of San Elijo Lagoon. These efforts included increasing hydraulic efficiency in the lagoon, improving pre-construction water quality impairments, and halting ongoing conversion of unvegetated wetland habitats (mudflat) to vegetated salt marsh with the goal of restoring a more connected gradient of balanced habitat types. Success of the restoration effort is being measured through the implementation of a monitoring program developed in coordination with various permitting and approval agencies, including the California Coastal Commission, the U.S. Army Corps of Engineers, the U.S. Fish and Wildlife Service, and the California Regional Water Quality Control Board. This report documents the results of the 240-workday plant establisment period (PEP) for the San Elijo Lagoon Restoration Project per contract requirements.

Approach

After restoration installation and planting were completed in June 2020, the 240-workday PEP began. During the 240-workday PEP, the restoration contractor provided regular maintenance of the restoration site. In the late fall of 2020 and prior to the end of the 240-workday PEP, installed container plants were assessed to determine the number of container plants that had died or required replacement.

Results

The 240-workday PEP was completed in June 2021. The number and species of plants installed in each habitat type are presented in Table 1-1; this includes the number of plants initially installed and the number of plants that were installed as replacement plants.

Mid-Marsh Replacement Planting						
Scientific Name	Common Name	Container Size	Original Qty	Replacement Plants		
Batis maritima	saltwort	rosepot	2,296	700		
Jaumea carnosa	salty Susan	rosepot	3,444	1,000		
Limonium californicum	sea lavender	rosepot	1,722	1,000		
Salicornia pacifica	pickleweed	gallon	0	1,500		
Suaeda esteroa	estuary sea blight	rosepot	1,557	0		
Suaeda esteroa	estuary sea blight	gallon	0	250		
	·	Total	9,019	4,450		
High Marsh Replacement Planting						
Scientific Nomo	Common Name	Container	Original	Replacement		
Scientific Name		Size	Qty	Plants		
Arthrocnemum subterminale	Parish's pickleweed	rosepot	3,416	0		
Arthrocnemum subterminale	Parish's pickleweed	gallon	0	900		
Cressa truxillensis	alkali weed	rosepot	257	0		
Distichlis spicata	salt grass	rosepot	2,135	350		
Distichlis littoralis	shoregrass	rosepot	1,667	275		
Frankenia salina	alkali heath	rosepot	5,125	0		
Frankenia salina	alkali heath	gallon	0	2,000		
Juncus acutus ssp. leopoldii	spiny rush	gallon	145	0		
Limonium californicum	sea lavender	gallon	426	200		
Suaeda taxifolia	woolly sea blight	rosepot	257	0		
	13,428	3,725				
Upland Transitional Replacement Planting						
Scientific Name	Common Name	Container	Original	Replacement		
		Size	Qty	Plants		
Adolphia californica	adolphia	gallon	67	0		
Leptosyne maritima	sea dahlia	gallon	135	350		
Distichlis spicata	salt grass	rosepot	2,689	175		
Distichlis littoralis	shoregrass	rosepot	1,543	150		
Encelia californica	bush sunflower	gallon	270	0		
Frankenia salina	alkali heath	gallon	3,026	0		
Isocoma menziesii	goldenbush	gallon	384	50		
Iva hayesiana	San Diego marsh elder	gallon	472	353		
Lycium californicum	coast desert thorn	gallon	270	150		
Peritoma arborea	bladderpod	gallon	202	222		
Total				1,450		

Table 1-1 Container Plants Replanted in Early 2021

Notes: Cordgrass was not included in this assessment because the survival of transplanted cordgrass cannot be determined until approximately 1 year after installation as this species frequently dies back above ground, but rhizomes continue to grow below ground.

July 2021 Page 3

Discussion

After the fall 2020 assessment, it was determined that approximately 50% of the 22,447 container plants installed in the mid- and high salt marsh were dead or missing, and in the transitional habitat areas approximately 26% of the 9,058 container plants were dead or missing. Within planted salt marsh, many of the plants identified as dead may have actually been dormant and only appeared dead or highly stressed. In all areas, it was difficult to determine if missing plants were actually missing, or were alive but hidden within areas of extensive natural recruitment or under accumulations of wrack. Due to the potential natural dormancy and extensive natural recruitment, the restoration team agreed that only bare and open areas would need to have container plants were installed in high marsh, and 1,450 container plants were installed in transitional areas. After replacement planting, a final assessment was conducted. The 240-working day PEP was approved as complete in June 2021.