APPENDIX J

SAN ELIJO LAGOON RESTORATION PROJECT CALIFORNIA RAPID ASSESSMENT METHOD ANALYSIS

SAN ELIJO LAGOON RESTORATION PROJECT YEAR 1 - RESTORATION CALIFORNIA RAPID ASSESSMENT METHOD ANALYSIS

Prepared for:

San Elijo Lagoon Conservancy P.O. Box 230634 Encinitas, California 92023 Phone: (760) 436-3944

Prepared by:

AECOM 401 West A Street, Suite 1200 San Diego, California 92101 Phone: (619) 610-7600

July 2022

TABLE OF CONTENTS

<u>Secti</u>	<u>on</u>		Page
EXE	CUTIVE S	SUMMARY	V
1.0	INTRO	DUCTION	1
	1.1	San Elijo Lagoon Setting	1
	1.2	California Rapid Assessment Method for Wetlands Overview	1
2.0	METH	ODS	5
	2.1	Selection of Assessment Area Locations	5
	2.2	Determination of CRAM Wetland Type	5
	2.3	Field Determination of Assessment Area Boundaries	6
		2.3.1 Estuarine	6
		2.3.2 Depressional	6
	2.4	CRAM Scoring	
3.0	RESUL	.TS	35
	3.1	Attribute 1: Buffer and Landscape Context	35
		3.1.1 Metric 1: Aquatic Area Abundance	
		3.1.2 Metric 2: Buffer	
	3.2	Attribute 2: Hydrology	41
		3.2.1 Metric 1: Water Source	
		3.2.2 Metric 2: Hydroperiod	42
		3.2.3 Metric 3: Hydrologic Connectivity	43
	3.3	Attribute 3: Physical Structure	44
		3.3.1 Metric 1: Structural Patch Richness	44
		3.3.2 Metric 2: Topographic Complexity	45
	3.4	Attribute 4: Biotic Structure	46
		3.4.1 Metric 1: Plant Community Composition	
		3.4.2 Metric 2: Horizontal Interspersion	49
		3.4.3 Metric 3: Vertical Biotic Structure	50
4.0	DISCU	SSION	51
5.0	REFER	ENCES	53

APPENDICES

A AA Site Photos

B AA Data Sheets

LIST OF TABLES

LIST OF FIGURES

Figure

Page

1	SELRP Project Area	3
2	Spatial Distribution of CRAM Index and Attribute Scores	7
3.1	CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area	
	(AA) – W-1	8
3.2	CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area	
	(AA) – W-4	9
3.3	CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area	
	(AA) – W-5	10
3.4	CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area	
	(AA) – C-4	11
3.5	CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area	
	(AA) – C-6	12
3.6	CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area	
	(AA) – C-8	13
3.7	CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area	
	(AA) – C-12	14

LIST OF FIGURES (Continued)

<u>Figure</u>

Page 1

3.8	CRAM Assessment (AA) – C-13				-				5
3.9	CRAM Assessment (AA) – C-31	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.10	CRAM Assessment (AA) – C-33	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.11	CRAM Assessment (AA) – C-37				-				3
3.12	CRAM Assessment (AA) – C-38				1)
3.13	CRAM Assessment (AA) – C-48				-)
3.14	CRAM Assessment (AA) – C-60	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.15	CRAM Assessment (AA) – C-64	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.16	CRAM Assessment (AA) – C-72				1				3
3.17	CRAM Assessment (AA) – C-73	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.18	CRAM Assessment (AA) – E-2	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.19	CRAM Assessment (AA) – E-33	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.20	CRAM Assessment (AA) – E-34	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.21	CRAM Assessment (AA) – E-36	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.22	CRAM Assessment (AA) – E-63	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
3.23	CRAM Assessment $(AA) - E-65$	Area	Boundaries	and	Landscape	Metrics	Assessment	Area	
	-								

LIST OF FIGURES (Continued)

<u>Figure</u>

Page 1

3.24	CRAM Assessment Area Boundaries and Landscape Metrics Assessment Ar	ea
	(AA) – E-75	31
4	Aquatic Area Abundance	35
5	Percent of AA with Buffer	36
6	Average Buffer Width	39
7	Buffer Condition	40
8	Water Source	41
9	Hydroperiod	42
10	Hydrologic Connectivity	
11	Structural Patch Richness	44
12	Topographic Complexity	45
13	Number of Plant Layers	46
14	Number of Codominant Species	47
15	Percent Invasion	
16	Horizontal Interspersion	49
17	Vertical Biotic Structure	
18	Distribution of Metric/Submetric Scores (A–D) as Percent of AAs	52

EXECUTIVE SUMMARY

San Elijo Lagoon and adjacent uplands provide habitats that support sensitive species, including federally threatened and endangered plants and animals, and resident and migratory wildlife. The lagoon has three basins: west, central, and east. Over the past several decades, the lagoon system gradually degraded over time due to the influence of urban development within the watershed. This development altered the sediment supply, nutrient levels, and hydrology and, subsequently, the physical and biological functions of the lagoon system. Water quality was impaired due to historical accumulation of nutrients in lagoon sediments, lack of circulation in the lagoon, and sedimentation in areas of impounded water. Muted tidal conditions, changes in inundation frequency, and increasing freshwater inputs from upstream development resulted in homogenizing of habitats with the loss of mudflats and an increase in freshwater marsh habitat. The overarching goal of the San Elijo Restoration Project (SELRP) is to protect and restore, then maintain via adaptive management, the San Elijo Lagoon ecosystem and its adjacent uplands to sustain and perpetuate native flora and fauna that are characteristic of southern California, and restore and maintain estuarine and brackish marsh hydrology. The SELRP is part of a mitigation strategy for transportation infrastructure projects associated with comprehensive, system-wide improvements in the North Coast Corridor.

After restoration implementation, San Elijo Lagoon was assessed using the California Rapid Assessment Method for Wetlands (CRAM) to determine the Year 1 wetland condition of San Elijo Lagoon. CRAM is a rapid assessment method that requires collecting Level 2 data (coarse data) for monitoring wetland conditions. Post-restoration CRAM scores will be compared against pre-restoration (baseline) condition CRAM scores to determine success of the restoration activities. CRAM scores are expected to be the same or better than the pre-restoration CRAM scores within 10 years of the restoration completion.

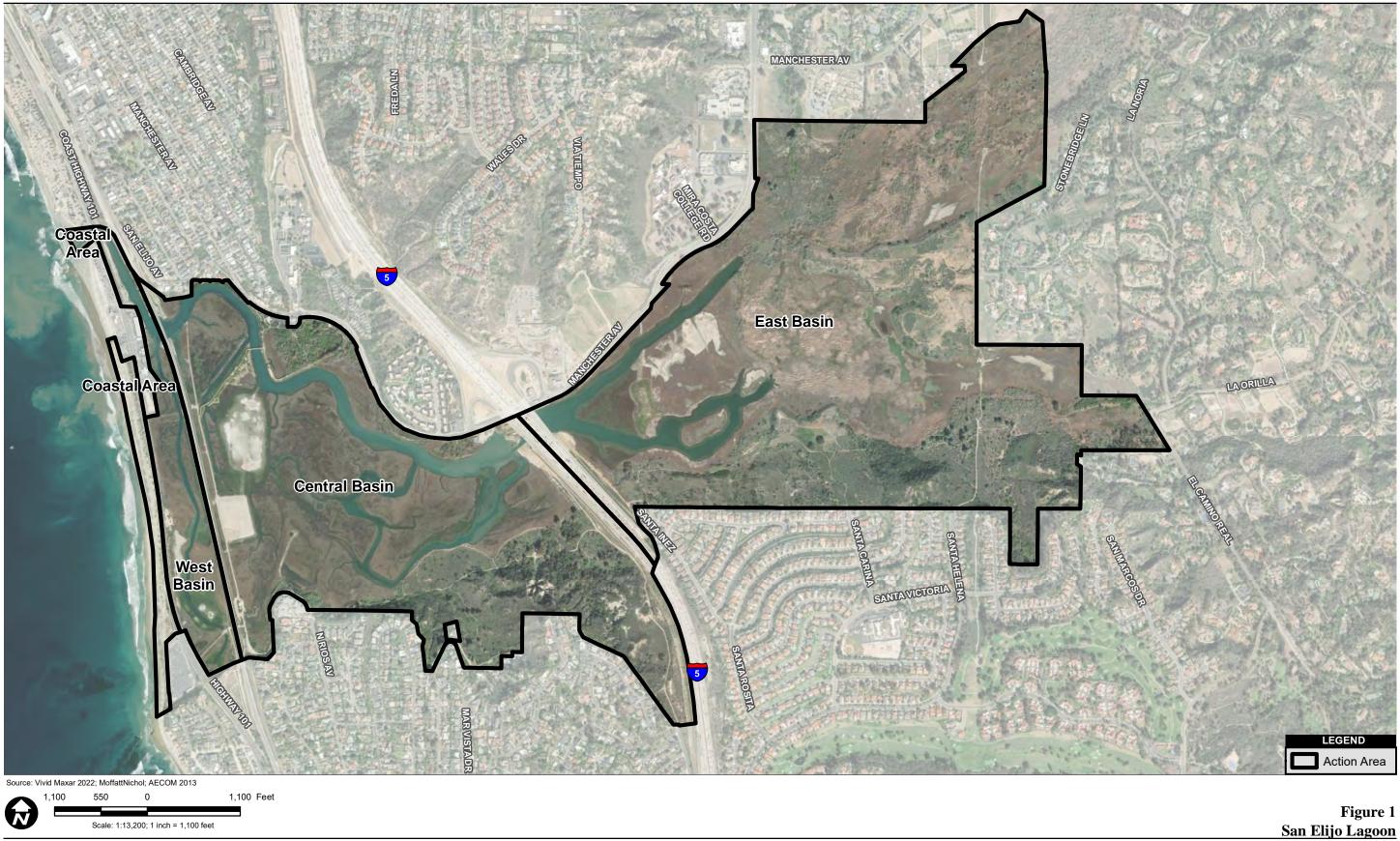
CRAM was performed by AECOM CRAM certified practitioners on October 28 and 29, 2021. Twenty-four assessment areas (AAs) distributed across the lagoon were assessed to determine the condition of the lagoon in 2022 after restoration activities concluded. The locations of 21 of the 24 AAs were the same as those used in the pre-restoration assessment conducted by AECOM in 2016. Three of the AA locations were adjusted to better align with the post-restoration landscape.

Overall CRAM scores in the lagoon ranged from a low of 61 to a high of 92. The highest scoring AA was C48, an estuarine AA in the central basin. The lowest scoring AAs were the estuarine AAs C33 (central basin) and W-4 (west basin) with a 61 and 63 overall score, respectively. The

lowest attribute scores for the entire lagoon were received in the hydrology and physical structure attributes and their associated metrics.

Year 1 post-restoration CRAM score results confirmed the lack of significant change in Buffer and Landscape attribute/metric scores after restoration implementation. Within the Hydrology attribute, Water Source is influenced by the level of development surrounding the lagoon and did not change after restoration. However, Hydroperiod and Hydrological Connectivity metric scores increased after restoration, resulting in a 2.4% increase from pre-restoration conditions in the average overall Hydrology attribute. Following these hydrological changes, positive changes in Physical and Biotic Structure attribute/metric scores will continue to occur at the 24 AAs assessed within San Elijo Lagoon. The overall estuarine scores are the same in 2021 as they were in 2016 at 72, while the overall depressional wetland score of 75.8 in 2016 is slightly higher than the score of 72.6 in 2021. This is most likely related to several years of drought as the depressional AAs are all in fairly high and dry locations that rely entirely on seasonal rain. These AAs will only be affected by the project improvements in the long term and sea level rise over time. With a resulting CRAM score for the estuarine AAs the same as the baseline CRAM score, the monitoring variable for Wetland Function is considered met for the project.

1.0 INTRODUCTION


1.1 SAN ELIJO LAGOON SETTING

San Elijo Lagoon (Figure 1) and adjacent uplands provide habitats that support sensitive species, including federally threatened and endangered plants and animals, and resident and migratory wildlife. The lagoon is composed of three basins: west, central, and east. The west basin is between the train tracks and Highway 101 and is the westernmost basin, closest to the coast. The central basin is between the train tracks and Interstate 5. The east basin is east of Interstate 5 and is the easternmost basin of the lagoon. San Elijo Lagoon has a relatively narrow connection to the ocean, and a confluence of freshwater flows from upstream sources. Transportation infrastructure traverses the lagoon, inhibiting freshwater flow to the ocean and tidal flow into the lagoon. Maintenance of the lagoon inlet is routinely performed to maintain a predominantly open system and allow for regular tidal flushing within the lagoon. While an open inlet allows freshwater and saltwater exchange to occur more frequently, tidal muting occurs in the far eastern portions of the east basin.

1.2 CALIFORNIA RAPID ASSESSMENT METHOD FOR WETLANDS OVERVIEW

The California Rapid Assessment Method for Wetlands (CRAM) was developed over a period of 10-plus years in collaboration with the resource agencies and scientists throughout California. The overall goal of CRAM is to "provide rapid, scientifically defensible, standardized, cost-effective assessments of the status and trends in the condition of wetlands and related policies, programs, and projects throughout California" (CWMW 2013a). CRAM is a rapid assessment method that requires collecting Level 2 data (coarse data) for monitoring wetland conditions.

One of the benefits of CRAM is that it does not require an intensive watershed-level assessment to calibrate variable scores. Instead, CRAM has been calibrated throughout California and in various wetland types. CRAM is an ambient monitoring and assessment tool that can be performed on different scales, ranging from an individual wetland to across a watershed or a larger region. CRAM is designed to collect a coarse assessment of a site's ambient conditions, but it can be used to measure progress toward meeting success criteria established for wetland function/condition and can be repeated over the long term if necessary or desired. Level 3 (fine scale) data are not necessary to complete a CRAM assessment, but are useful when determining many of the CRAM attribute scores and interpreting the final CRAM scores. CRAM is being used to assess the changes in wetland conditions of San Elijo Lagoon after restoration implementation. CRAM scores will be used in conjunction with other performance standards to help determine success of the restoration over time as the lagoon is expected to achieve similar or better condition scores than the 2016 baseline.

Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDGI\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\Restoration_Plan\San Elijo Lagoon.mxd, 7/14/2022, daniel.arellano

This page intentionally left blank.

2.0 METHODS

2.1 SELECTION OF ASSESSMENT AREA LOCATIONS

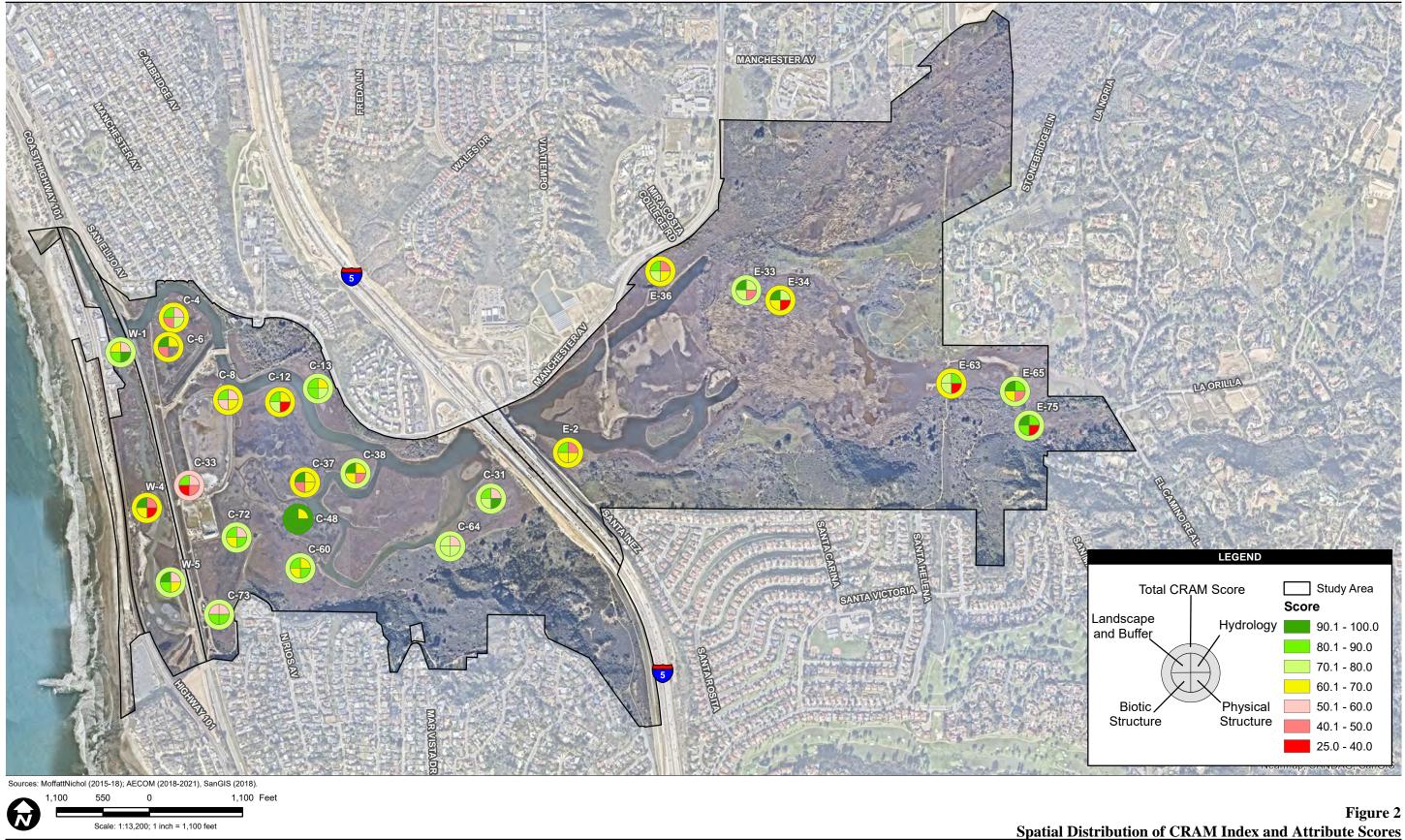
The San Elijo Lagoon Conservancy completed a CRAM assessment of the lagoon in 2010. Twenty-five assessment areas (AAs) were distributed across the lagoon to determine the condition of the lagoon in 2010. These same AAs were surveyed for the 2016 baseline condition assessment (AECOM 2016) before restoration activities began at the lagoon. Twenty-four of these AAs were surveyed during the Year 1 post-restoration CRAM surveys during 2021; the removal of one AA was necessary because the pre-restoration location of the AA was no longer appropriate to assess post-restoration conditions. The location of three AAs was slightly adjusted to better align with the post-restoration landscape (i.e., not be placed in a location that will be open water post-restoration) (Figure 2). CRAM was performed by AECOM CRAM certified practitioners on October 28 and 29, 2021, following the latest guidelines, currently version 6.1 (CWMW 2013a), and appropriate field books for the wetland module types (CWMW 2013b, 2013c).

2.2 DETERMINATION OF CRAM WETLAND TYPE

One of the first steps in CRAM is determining the wetland type to be assessed and using the appropriate field manual to assess a feature. Following the pre-restoration methodology, two different wetland types, and therefore two different modules, were used for this assessment: estuarine and depressional. The majority of the AAs (19) were estuarine wetlands, found in the west, central, and westernmost portions of the east Basin. However, five AAs in the east basin did not fit the CRAM definition of estuarine wetlands and were assessed using the depressional module. The following summarizes these wetland types as defined by CRAM:

- **Estuarine** wetlands consist of aquatic (i.e., sub-tidal) and semi-aquatic (i.e., intertidal) environments that are strongly influenced by mixtures of ocean water and upland runoff due to tidal processes operating through an ocean inlet. Estuaries are mostly enclosed by land. Their inlets may be natural or unnatural.
- **Depressional** wetlands occur in topographic lows (i.e., closed-elevation contours) that allow the accumulation of surface water and, in some cases, groundwater. These systems can be natural or artificial in origin, and can occur on the landscape as isolated basins with distinct boundaries, as a complex of shallows and seasonally wet depressions created by the slight topographic relief with indistinct boundaries, or as a large complex of interconnected basins.

2.3 FIELD DETERMINATION OF ASSESSMENT AREA BOUNDARIES


The boundaries of each AA were determined in the field using the guidance provided in the appropriate wetland type field manual. Figures 3.1 through 3.24 show the boundary of each AA.

2.3.1 Estuarine

The boundary of an estuarine wetland AA should be determined during low tide. The AA should not extend above the backshore, and it should not extend more than 10 meters across a non-vegetated tidal flat that adjoins the foreshore. The backshore is typically indicated by wrack lines and transitions from intertidal to upland vegetation. The AA should not extend across any tidal channel that is wider than 30 meters or cannot be safely crossed at low tide. The boundary of the AA can extend along the midline of such channels but not across them. The AA can incorporate any smaller channels that can be safely crossed on the ground. The AA will, therefore, include all of the intertidal marsh plain and associated features, such as pannes and natural levees, plus all of the tidal channels that can be crossed, plus the exposed banks and beds of channels that border the AA. The recommended size and shape for estuarine wetlands is a 1-hectare circle, but the shape can be non-circular, if necessary, to fit the wetland with a minimum size of 0.1 hectare (CWMW 2013b).

2.3.2 Depressional

As a general rule, the AA should extend from the backshore, as indicated by high-water marks or a transition from wetland to upland plants, to the foreshore, the boundary between the vegetated wetland and any adjoining semi-aquatic, non-wetland area, or a fully aquatic area such as open water. If open water is present, the AA should extend 10 meters beyond the foreshore into open water. The backshore (landward boundary) of the AA will include any adjacent riparian vegetation that directly overhangs the wetland, including the entire footprint of individual trees or plants that overhang the wetland. If riparian vegetation does not overhang the wetland, an area 2 meters wide extending landward from the backshore as part of the AA is included. The recommended AA size for depressional wetlands is 1 hectare, and no larger than 2 hectares (CWMW 2013c). !!

Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Results_v3.mxd, 5/2/2022, daniel.arellano

AA		Aquatic Area Abundance	AA E	Suffer	ALL	EV ALLEY		10.00	0, 19 0	The o d
W1	N		W1	25		20	B	C C D		
	S	40		15		E P	DUBLINIP	5.2.5	I Z	E EE FIA
	E	100		15		2	A A	E ST		
	W	75		15	-		NPOT ICIS	E En	CON 94	
	Average	61.25		15				n Jor	ERN ROR	
				5		SAL		MUKENON	46 46	
				5	- Carlo	ELS		0.00		
				5	PRIVAT		2	A BURN		
			Average	12.5	m					
					P				AL 1	
										Len h
							EL SO	S. A	A M	MANCHE
					1 8	ALE AL		1 ye		
								Aug	into F	
							W-1		A	
						L		16.31	1/4/2	- WERE
					1		10 - Contraction of the second		1	
									BA	14
			3		1	0.00	F			7
					to a	OAST-HU				
				and a	A Real	All of the second se			25 304	
LEGEND)						MARY		1	
	ion Area						107			
	AM Site								A PART	
Buffer Lir										
	eled ID and Leng					N ANN				
	Area Abundance Jatic					6 6				
	n Aquatic									1 2 1
•	oto Point							PRIVATE		1 Contraction
								品 ·		and a second and
rce: SANDAG, M 50	<i>I</i> offattNichol; AECOM. 0 50 10	0 150 200 250 Meters								

Scale: 1:5,094; 1 in = 150 meters

SELRP Year 1 – Restoration CRAM Report

Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_W1.mxd, 7/14/2022, daniel.arellano

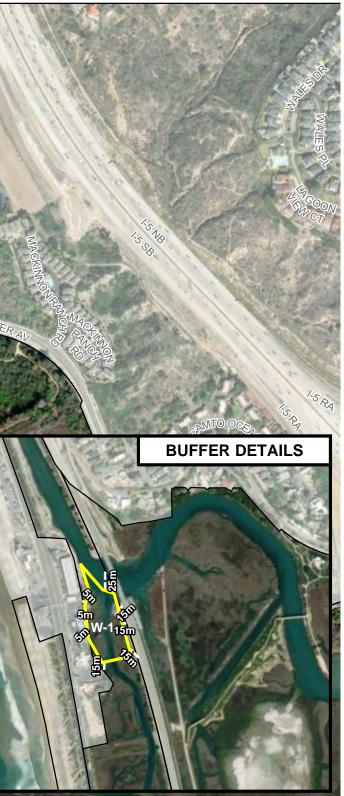


Figure 3.1 CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - W-1

N Scale: 1:5,094; 1 in = 150 meters

SELRP Year 1 – Restoration CRAM Report

Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_W4.mxd, 7/14/2022, daniel.arellano

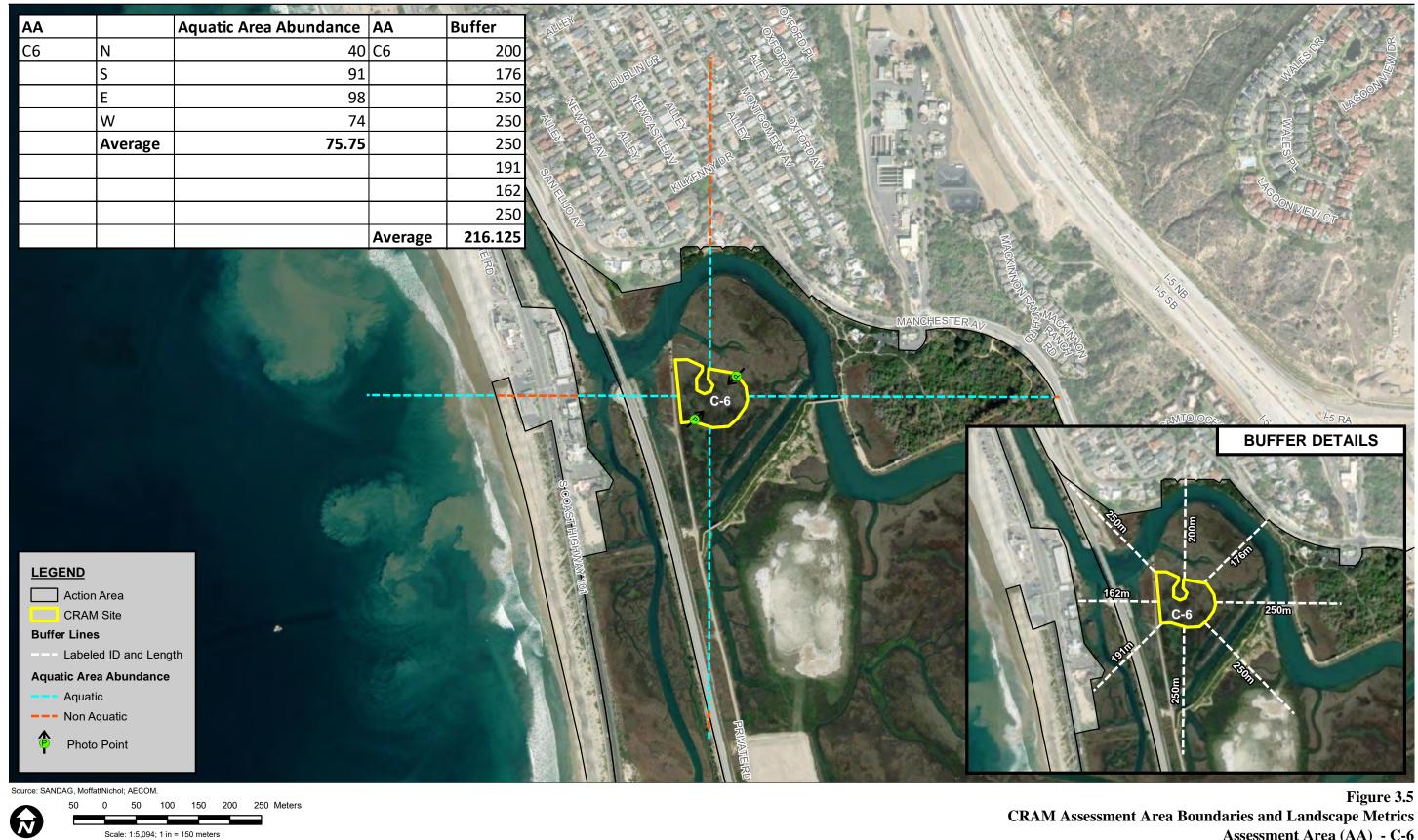
CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - W-4

N Scale: 1:5,094; 1 in = 150 meters

SELRP Year 1 – Restoration CRAM Report

Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_W5.mxd, 7/14/2022, daniel.arellano

CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - W-5



Scale: 1:5,094; 1 in = 150 meters

N

Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDG1\DC\$\Projects\2009\09080064_SELRP_EIR(6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_C4.mxd, 7/13/2022, danieLarellano

CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-4

Path: \\na.aecomnet.com\\fs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_C6.mxd, 7/13/2022, daniel.arellano

Assessment Area (AA) - C-6

A	ic Area dance	Buff
N	55 W	W 245
S	00 NW	W 250
E	59 N	N 250
w	76 NE	
erage	75 E	
	SE	
	S SW	
	SW Average	
GEND Action Area CRAM Site ffer Lines Labeled ID an uatic Area Abun Aquatic Non Aquatic Photo Point		

200 250 Meters 100 150 \overline{N} Scale: 1:5,904; 1 in = 150 meters

SELRP Year 1 – Restoration CRAM Report

Path: \\na.aecomnet.com\\lfs\AMER\\SanDiego-USSDG1\DC\\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C8_2022.mxd, 5/3/2022, daniel.arellano

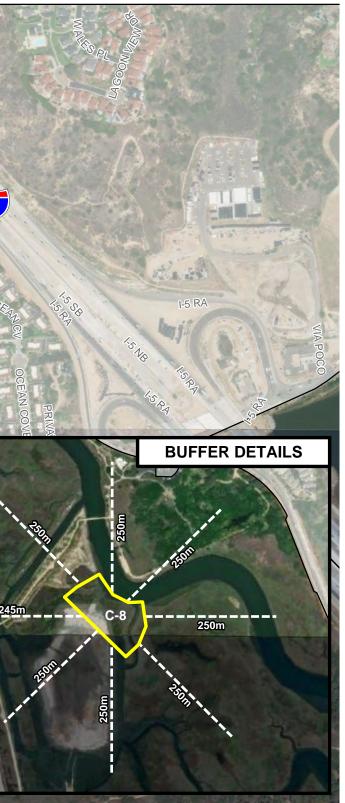
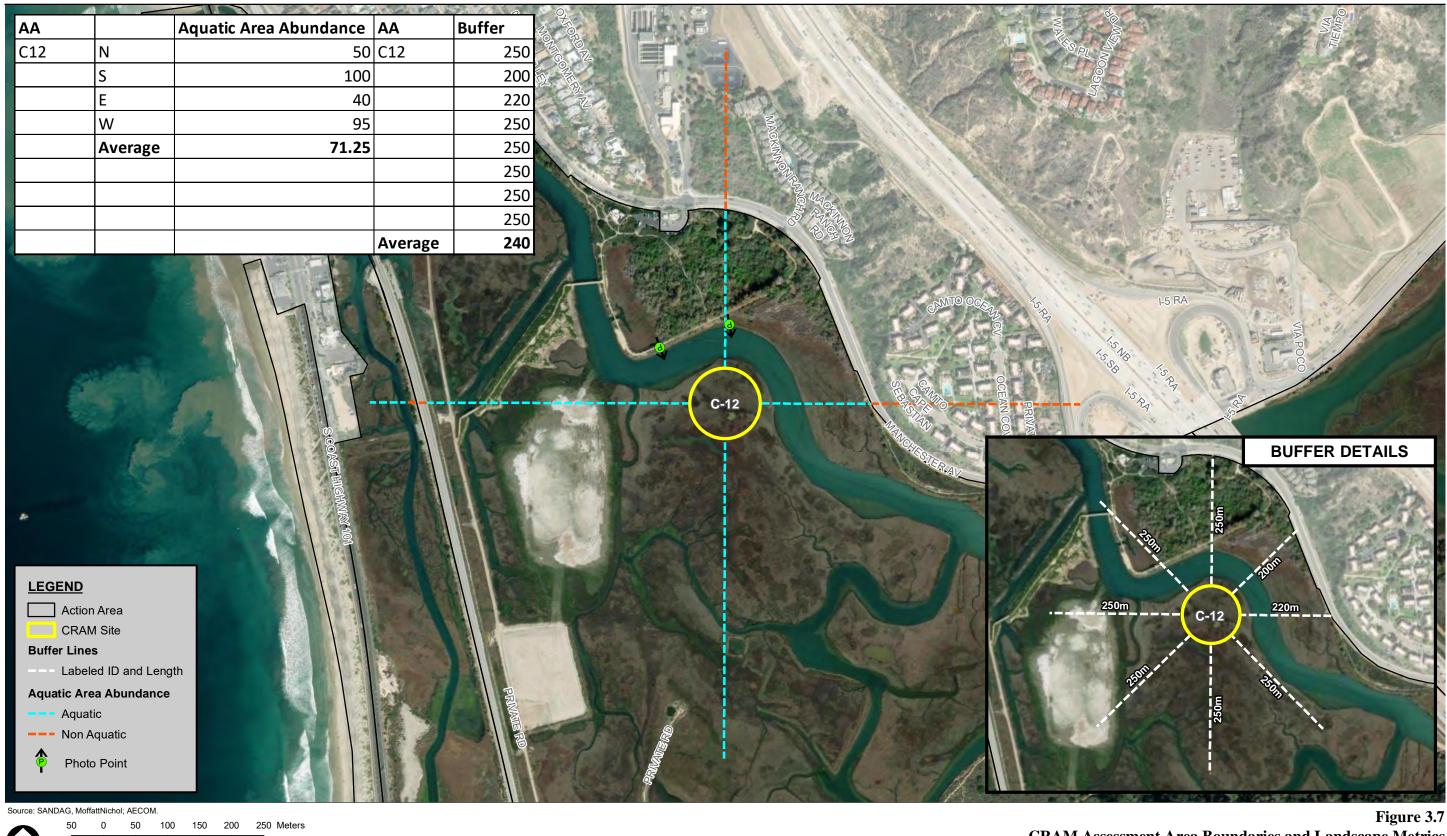
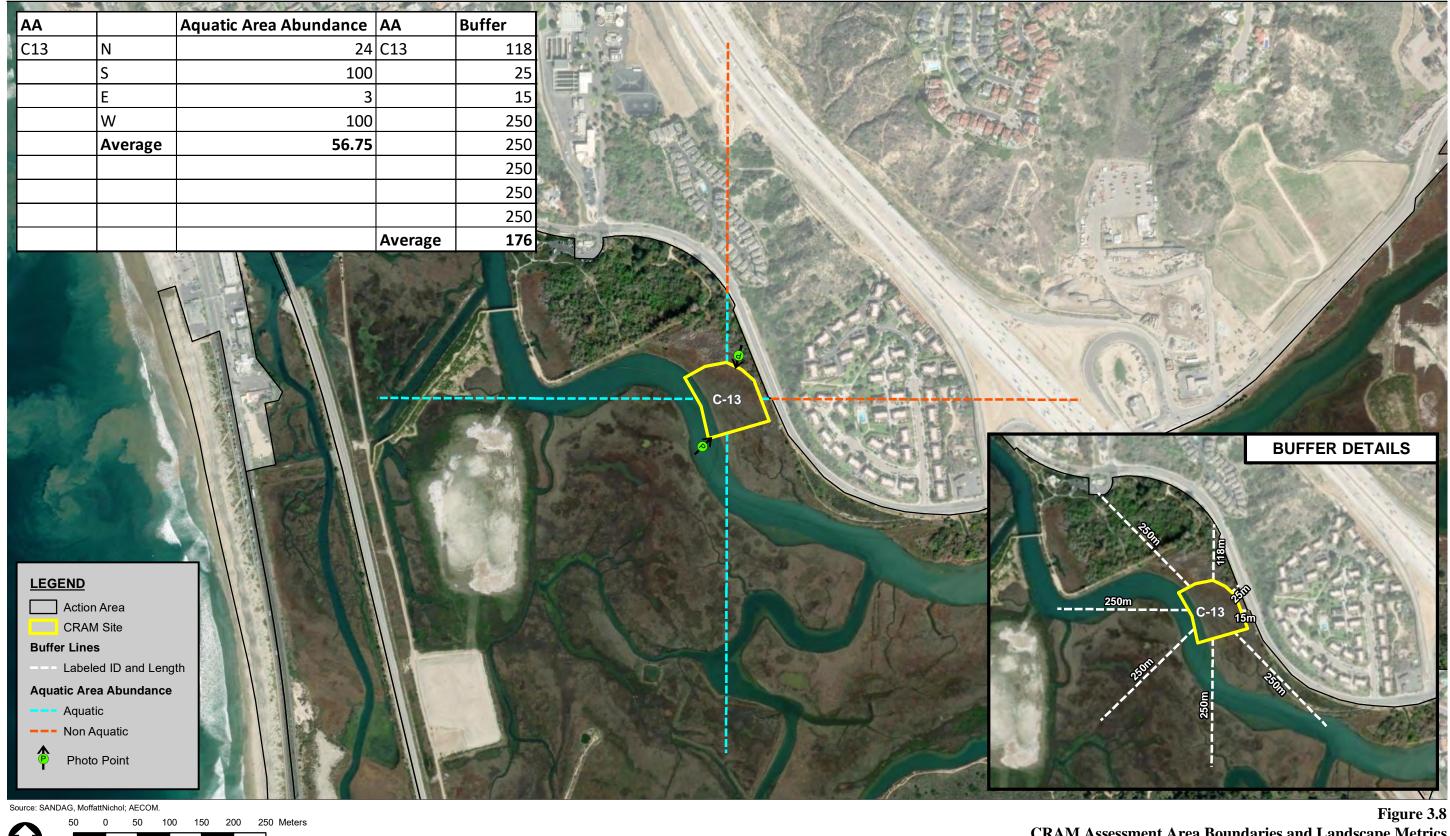



Figure 3.6 CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-8

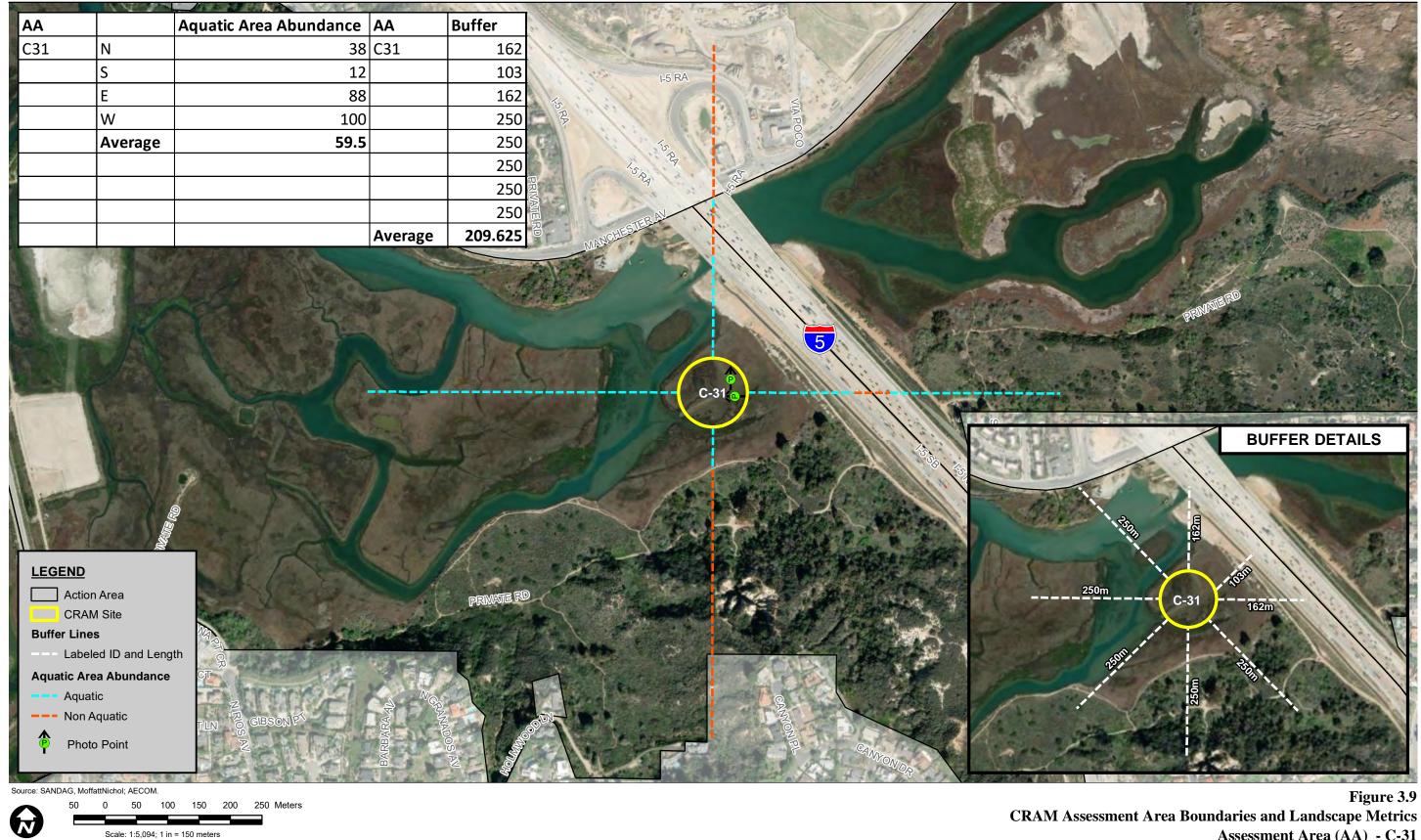


SELRP Year 1 – Restoration CRAM Report Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C12.mxd, 7/13/2022, daniel.arellano

N

Scale: 1:5,094; 1 in = 150 meters

CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-12



Scale: 1:5,094; 1 in = 150 meters SELRP Year 1 – Restoration CRAM Report

N

Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C13.mxd, 7/13/2022, daniel.arellano

CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-13

Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C31.mxd, 7/13/2022, daniel.arellano

Assessment Area (AA) - C-31

Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C33.mxd, 7/13/2022, daniel.arellano



Scale: 1:5,094; 1 in = 150 meters
SELRP Year 1 – Restoration CRAM Report

N

Path: \\na.aecomnet.com\\lfs\AMER\\SanDiego-USSDGI\DC\\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C37.mxd, 7/13/2022, daniel.arellano

Figure 3.11 CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-37

Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C38.mxd, 7/13/2022, daniel.arellano

Assessment Area (AA) - C-38

SELRP Year 1 – Restoration CRAM Report Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C48.mxd, 7/13/2022, daniel.arellano

Scale: 1:5,094; 1 in = 150 meters

N

CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-48

AA C60 N	Aquatic Area Abundance	AA	Buffer	
		C60	250	
S	18		250	
E	44		250	
W	91		191	
Average	63.25	1	147	
			118	
			250	
			250	
		Average	213.25	
LEGEND Action Area CRAM Site Buffer Lines Labeled ID and Ler Aquatic Area Abundanc				

Scale: 1:5,094; 1 in = 150 meters

SELRP Year 1 – Restoration CRAM Report Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_C60.mxd, 7/13/2022, daniel.arellano

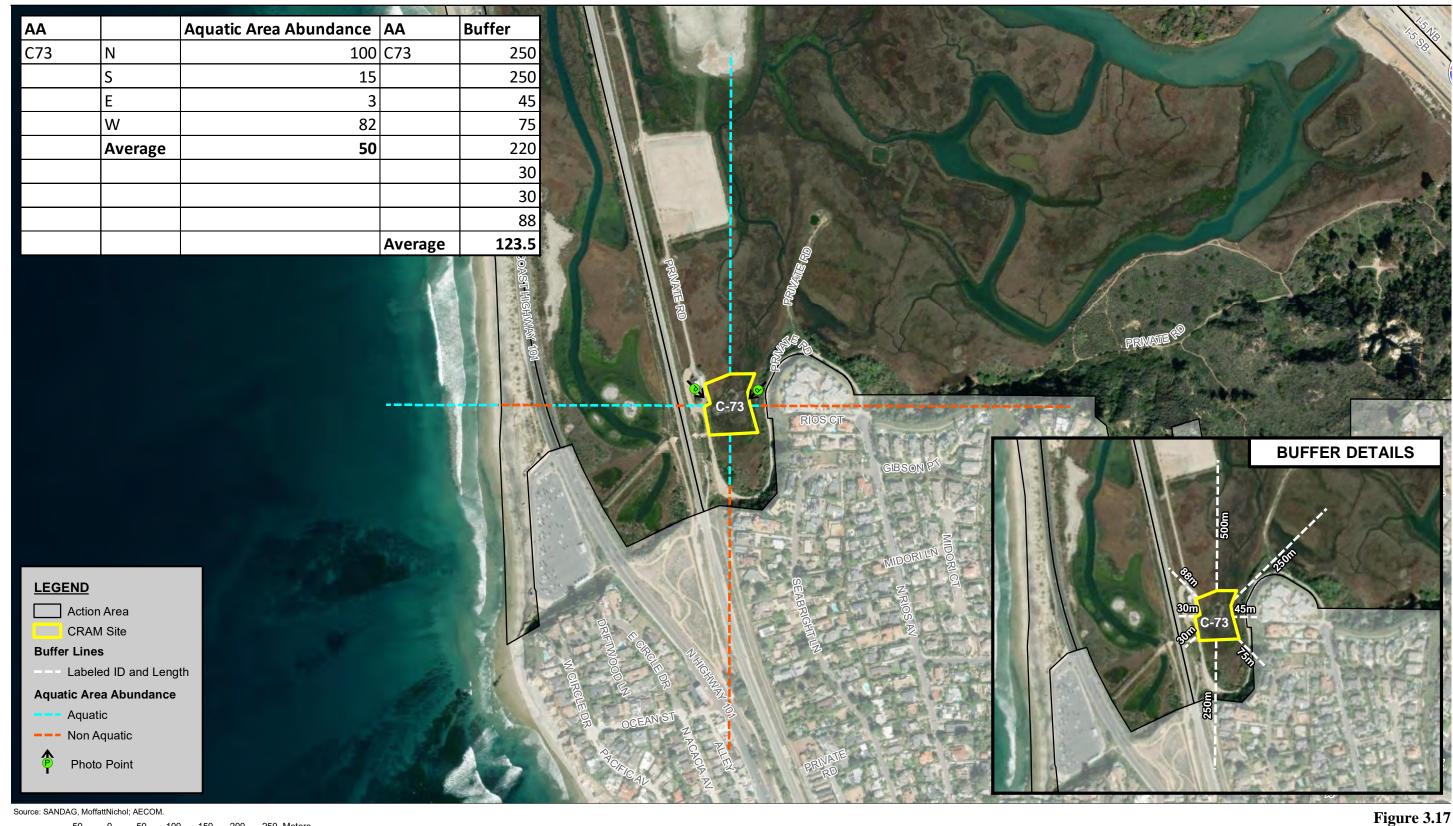
Figure 3.14 CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-60

AA		Aquatic Area Abundance AA	Buffer	AR S AN
C64	N	76 C64	250	
	S	3	250	OCEA PR IS AP 15 PP 15 P
	E	3	250	
	W	100	250	
	Average	45.5	250	MANCHESTERE
			250	
			250	
			250	
		Average		
	Site d ID and Leng a Abundance c quatic		BARBARA	
50	ttNichol; AECOM. 0 50 100 Scale: 1:5,094; 1 in			CRAM A

Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_C64.mxd, 7/13/2022, daniel.arellano

Figure 3.15 ssessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-64

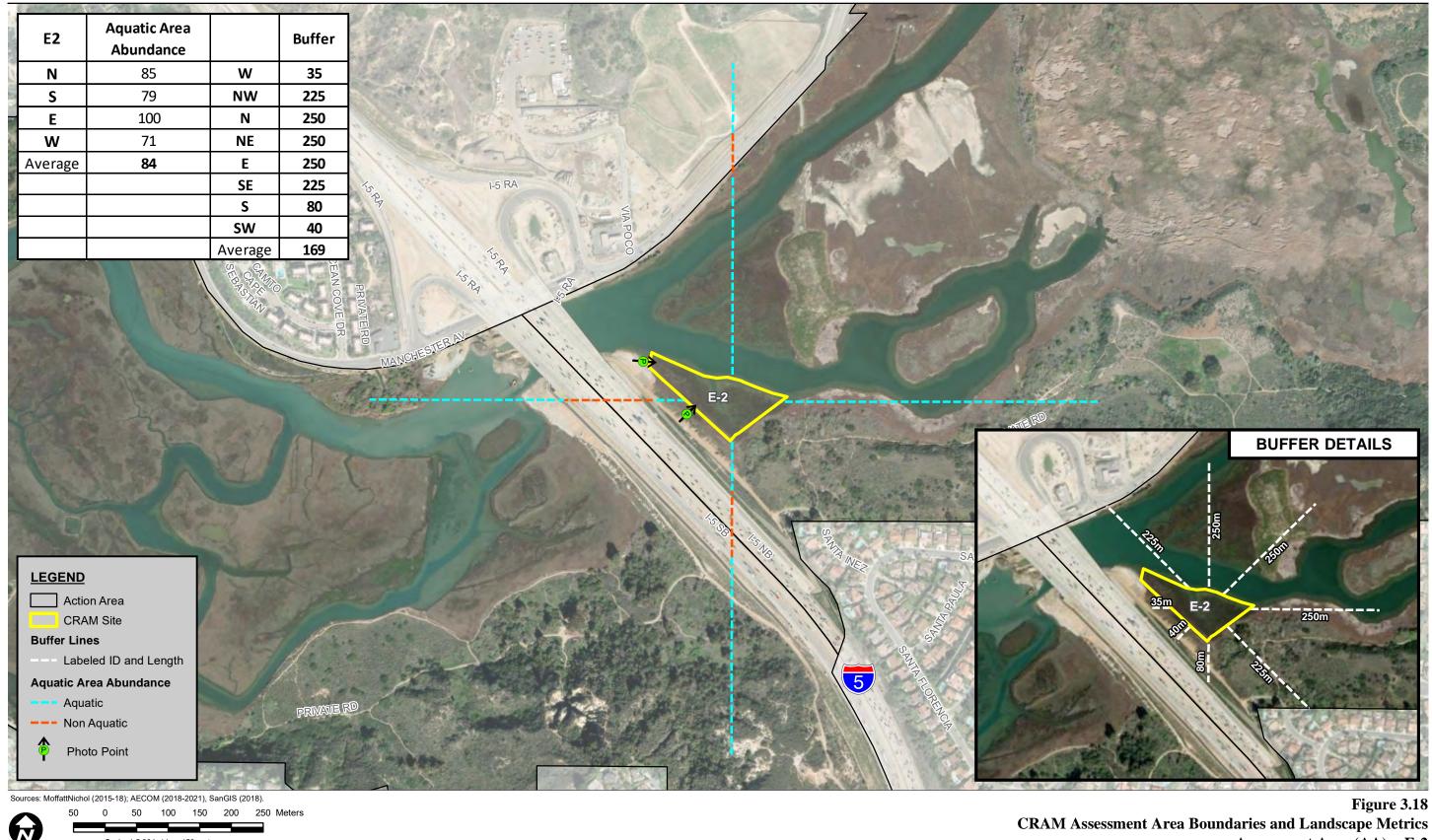
C72	Aquatic Area Abundance		Buffer		CAMITO
Ν	100	W	139		SERVIC
S	65	NW	250		TSTA O
Ε	97	Ν	250		TAN
W	47	NE	250		
Average	77	E	250		
		SE	250		
		S	250		
		SW	173		Tet los
		Average	227	S-COAST-HICHNWAY	and the for
CRA Buffer Line	n Area M Site			PRIMATE TO C-72 RIOS CT RIOS	


200 250 Meters 150 100 Scale: 1:5,904; 1 in = 150 meters

SELRP Year 1 – Restoration CRAM Report

Path: \\na.aecomnet.com\\fs\AMER\\SanDiego-USSDG1\DC\\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_C72_2022.mxd, 7/14/2022, daniel.arellano

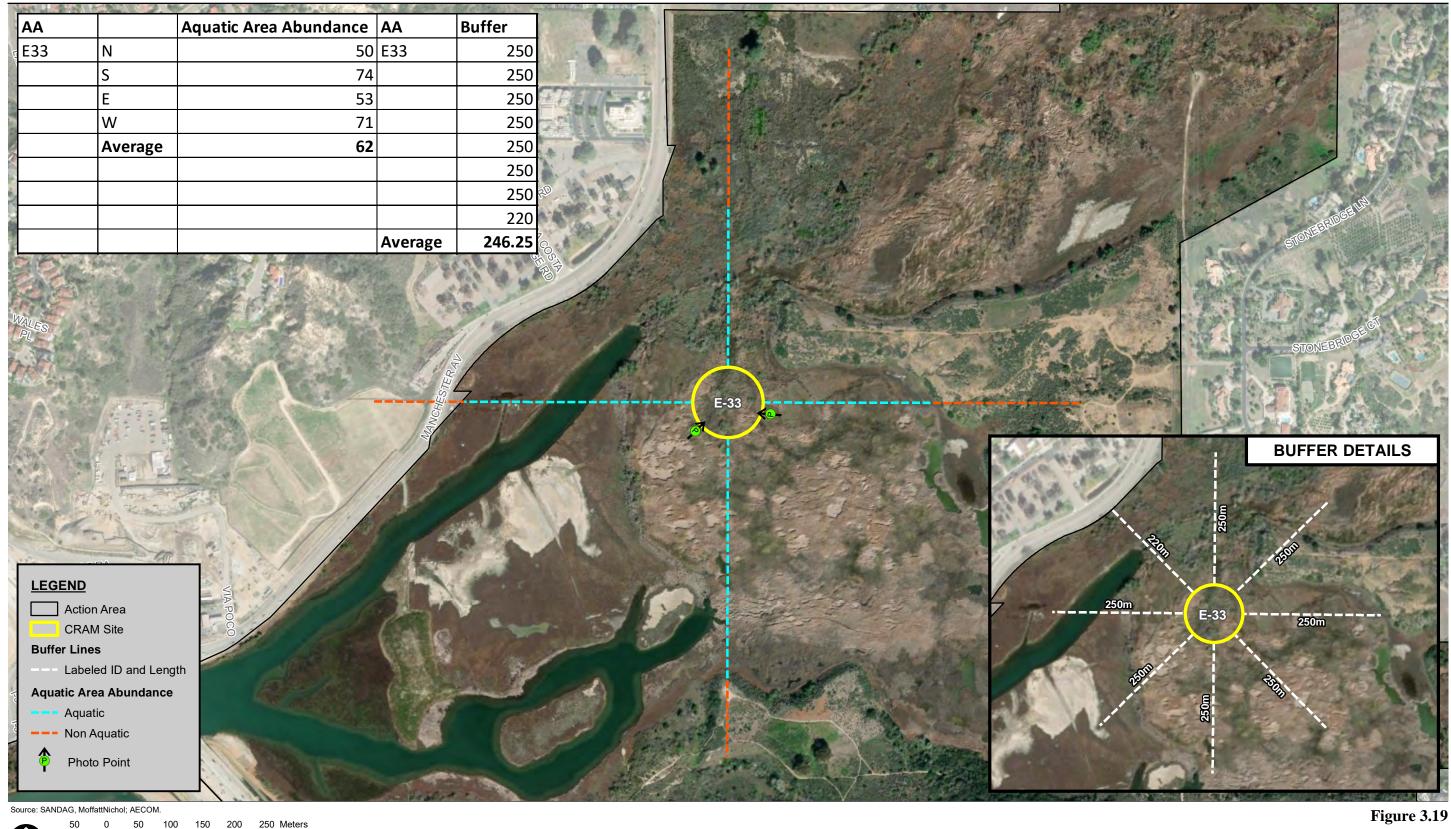
Figure 3.16 CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-72



200 250 Meters 50 100 150 0 50 N Scale: 1:5,094; 1 in = 150 meters

SELRP Year 1 – Restoration CRAM Report

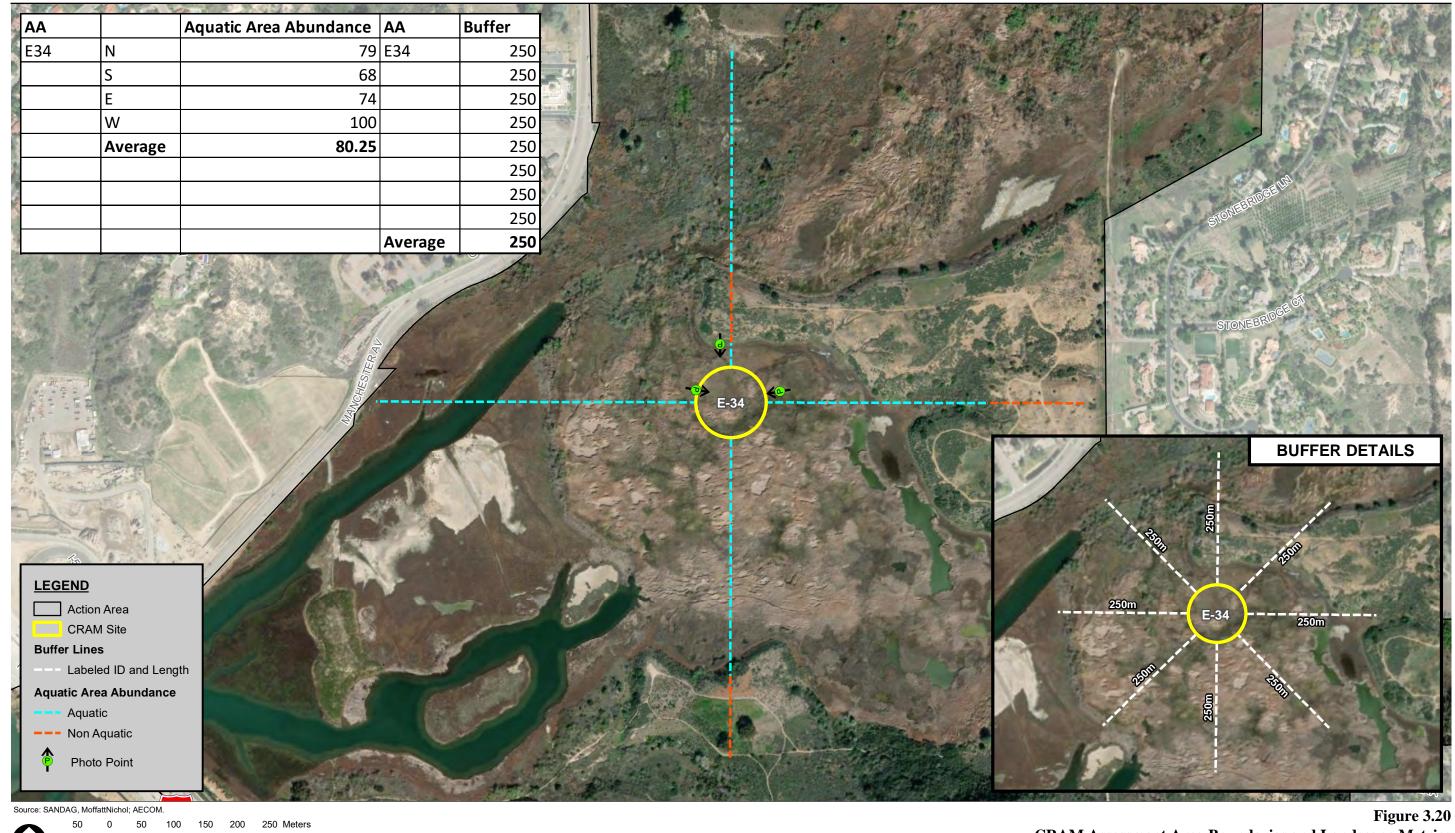
Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_C73.mxd, 7/14/2022, daniel.arellano


CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - C-73

Scale: 1:5,904; 1 in = 150 meters

Path: \\na.aecomnet.com\\lfs\AMER\\SanDiego-USSDG1\DC\\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_E2_2022.mxd, 7/14/2022, daniel.arellano

Assessment Area (AA) - E-2

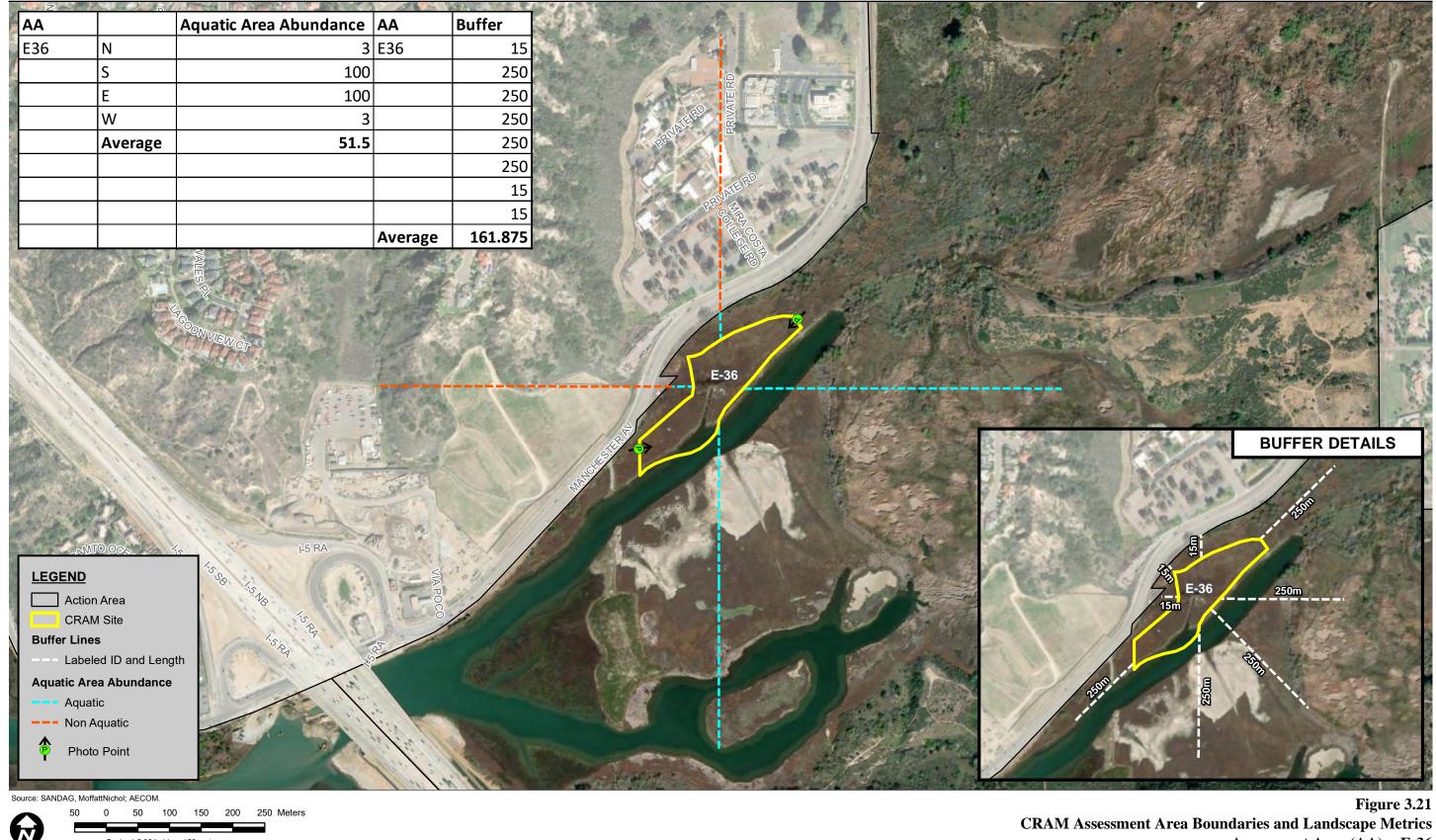


Scale: 1:5,094; 1 in = 150 meters

N

Path: \\na.aecomnet.com\\fs\\AMER\\SanDiego-USSDG1\DC\$\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_E33.mxd, 7/14/2022, daniel.arellano

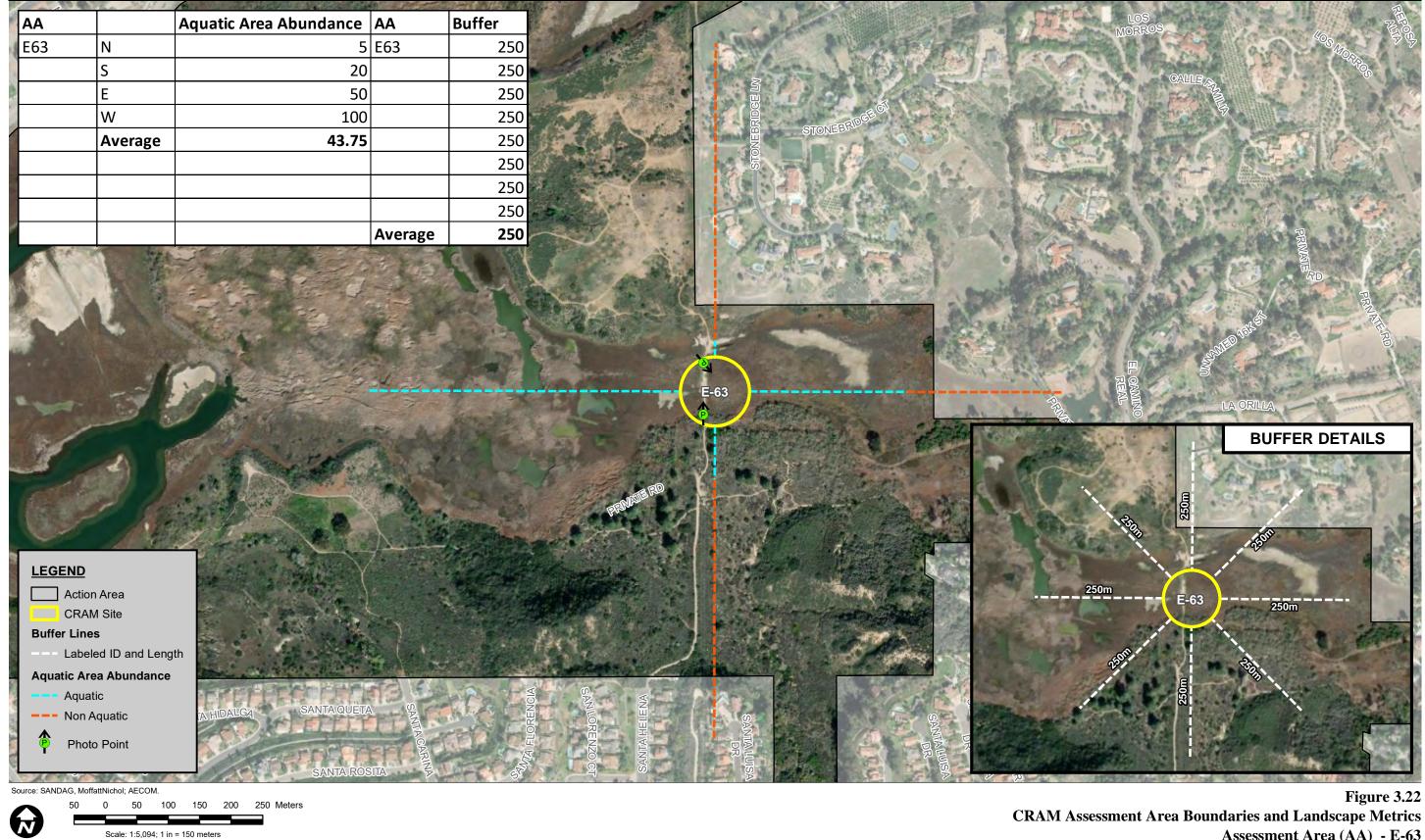
Figure 3.19 CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - E-33



Scale: 1:5,094; 1 in = 150 meters

N

Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_E34.mxd, 7/14/2022, daniel.arellano


Figure 3.20 CRAM Assessment Area Boundaries and Landscape Metrics Assessment Area (AA) - E-34

Scale: 1:5,094; 1 in = 150 meters

Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_E36.mxd, 7/14/2022, daniel.arellano

Assessment Area (AA) - E-36

Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_E63.mxd, 7/14/2022, daniel.arellano

Assessment Area (AA) - E-63

AA		Aquatic Area Abundance	AA	Buffer	- Canada Martin - Contraction in 195
65	N	20	E65	250	A AND AND A AND AND A AND A AND AND AND
	S	20		250	
	E	55		250	
	W	100		250	STONEBRU
	Average	48.75		250	
				250	
				250	A SALAR AND A SALAR AND A SALAR AND A SALAR AND A
				250	
			Average	250	And the second sec
14	Store 2		N.	S And State	
E-	Friday		2 here	1	A State And A State A Stat
mare to			A whether		
and the second	A Starting		2-0	-	
3m		A PARA	A Same	and the second	The second se
10	1 miles		NO P	-	
1	A station				E-65 E-65
	1 all	BAR AN AN AN AN	a salar		
ALL AND	1 1 1 1		and the second		
1.30			The second		
110	AL ST		S. A.	OF STREET	A REAL PROPERTY AND A REAL
	A service and a service of the servi	A A Charles	3 370	PENN	The second se
1	AND AL		The second		
Contraction of the	100 F 3 F		Sell and	The second	
	<u>0</u>				RANCHO
	ion Area			and the sea	RANCHO SERENA
	AM Site		St. A.		
Buffer Li					
	beled ID and Leng	and the second			
	Area Abundance	DUETA Q	THE AC		
	uatic n Aquatic		ICIA		SAN
•			REN		TALL
P Ph	oto Point	DSITA	R. L	ANT	TISA TISA
27.9		SAM	and the second		
	MoffattNichol; AECOM. 0 50 10	00 150 200 250 Meters			
50	0 50 10				CRA
	Scale: 1:5,094; 1 i	n = 150 meters			

Path: \\na.aecomnet.com\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM\CRAM_Field_Map_E65.mxd, 7/14/2022, daniel.arellano

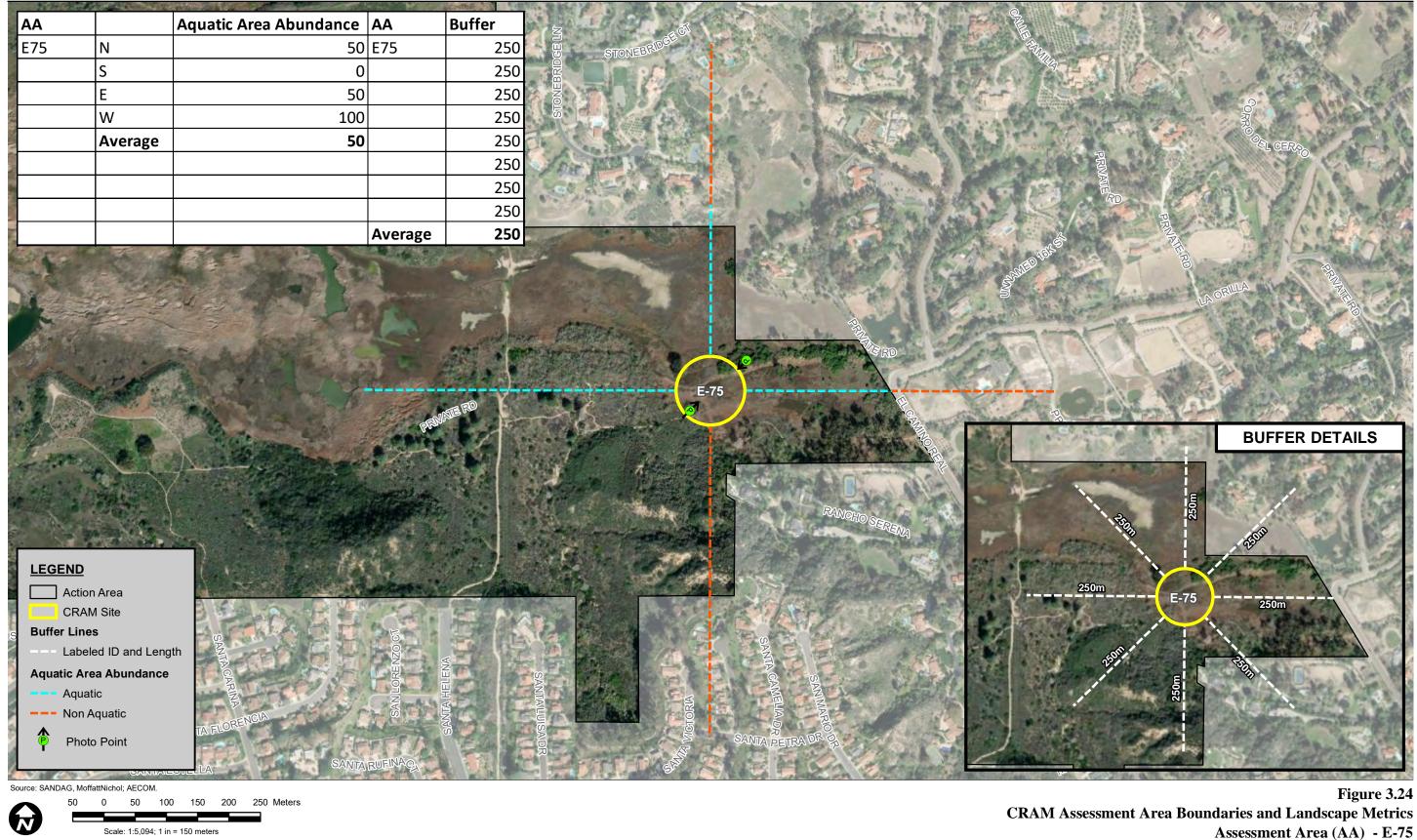



Figure 3.23 sessment Area Boundaries and Landscape Metrics Assessment Area (AA) - E-65

Path: \\na.aecomnet.com\\lfs\AMER\SanDiego-USSDG1\DCS\Projects\2009\09080064_SELRP_EIR\6.0 GIS\6.3 Layout\CRAM_CRAM_Field_Map_E75.mxd, 7/14/2022, daniel.arellano

This page intentionally left blank.

2.4 CRAM SCORING

The final CRAM score for each AA is composed of four main attribute scores (buffer and landscape context, hydrology, physical structure, and biotic structure), which are based on the metric and submetric scores (a measurable component of an attribute) (Table 1). The anticipated relationships between the CRAM attributes and metrics, and various ecological services expected from conceptual models of wetland form and function, are presented in Table 2. CRAM practitioners assign a letter rating (A–D) for each metric/submetric based on a defined set of condition brackets ranging from an "A" as the theoretical best case achievable for the wetland class across California, to a "D," the worst case achievable. Each metric/submetric condition level (A–D) has a fixed numerical value (A=12, B=9, C=6, D=3), which, when combined with the other metrics, results in a score for each attribute. That number is then converted to a percentage of the maximum score achievable for each attribute and represents the final attribute score, ranging from 25 to 100%.

	Attributes	Metrics and Submetrics						
		Aquatic Area Abundance						
		Buffer:						
Buffer and L	andscape Context	 Percent of Assessment Area with Buffer 						
		 Average Buffer Width 						
		 Buffer Condition 						
		Water Source						
Hydrology		Hydroperiod						
		Hydrologic Connectivity						
	Dhysical	Structural Patch Richness						
	Physical	Topographic Complexity						
		Plant Community Composition:						
Structure		 Number of Plant Layers 						
Structure	Biotic	 Number of Codominant Species 						
	Biotic	 Percent Invasion 						
		Horizontal Interspersion and Zonation						
		Vertical Biotic Structure						

Table 1CRAM Attributes and Metrics

	Attributes	Buffer and Landscape Context	H	ydrol	ogy	Phys Strue	sical cture	Biotic Structure								
	Metrics or Submetrics	Buffer and Landscape Connectivity Metrics	Water Source	Hydroperiod	Hydrologic Connectivity	Structural Patch Richness	Topographic Complexity	Number of Plant Layers	Number of Codominant Species	Percent Invasion	Horizontal Interspersion	Vertical Biotic Structure				
	Short- or long-term surface water storage	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark				
	Subsurface water storage		\checkmark	\checkmark	\checkmark		\checkmark									
ES	Moderation of groundwater flow or discharge	\checkmark	\checkmark													
SERVICES	Dissipation of energy					\checkmark	\checkmark	\checkmark			\checkmark	\checkmark				
ZEF	Cycling of nutrients	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				
KEY	Removal of elements and compounds	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			\checkmark					
	Retention of particulates			\checkmark	\checkmark	\checkmark	V	\checkmark	\checkmark		\checkmark					
	Export of organic carbon			\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark				
	Maintenance of plant and animal communities	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

 Table 2

 Expected Relationship among CRAM Attributes, Metrics, and Key Services

3.0 RESULTS

The CRAM scores for current wetland conditions at each AA are provided in Table 3, and CRAM data sheets are provided in Appendix B. Based on the known precision for overall CRAM scores, AAs that differ by more than 11 CRAM points represent a significant difference in condition. Overall CRAM scores in the lagoon ranged from a low of 61 to a high of 92 (Table 3). The highest scoring AA was C48, an estuarine AA in the central basin. The lowest scoring AAs were the estuarine AAs C33 (central basin) and W-4 (west basin) with a 61 and 63 overall score, respectively. Scoring for each metric and submetric is discussed below. Based on the known precision for attribute scores, attribute scores that differ by 6 or more CRAM points represent a significant difference in condition.

3.1 ATTRIBUTE 1: BUFFER AND LANDSCAPE CONTEXT

3.1.1 Metric 1: Aquatic Area Abundance

Aquatic area abundance is assessed in terms of its spatial association with other areas of aquatic resources, such as other wetlands, lakes, streams, etc. Wetlands close to each other have a greater potential to interact ecologically and hydrologically, and interactions are generally beneficial. As observed in the pre-restoration surveys, almost all AAs scored an A or B (Figure 4), indicating a high level of connectivity to nearby aquatic features. This makes sense given the lagoon setting.

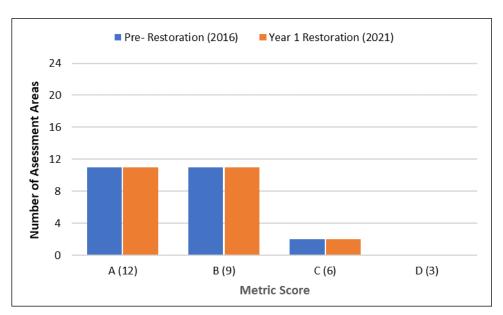


Figure 4 Aquatic Area Abundance

3.1.2 Metric 2: Buffer

The buffer is the area adjoining the AA that is in a natural or semi-natural state and currently is not dedicated to anthropogenic uses that would severely detract from its ability to entrap contaminants, discourage entry into the AA by people and non-native predators, or otherwise protect the AA from adjacent stress and disturbance. This metric is composed of three submetrics that assess various elements of the buffer habitat: presence, width, and condition (see below). The scoring for these submetrics is combined with the landscape connectivity metric score (above) in a simple algorithm that results in the overall buffer and landscape attribute score.

Submetric: Percent of Assessment Area with Buffer

This submetric is based on the relationship between the extent of the buffer and the functions the buffer provides to wetland areas. The percentage of buffer surrounding the AA is obtained by calculating the percentage of the area adjoining the AA that is in a natural or semi-natural state and is at least 5 meters wide. This submetric is calculated the same regardless of wetland module used. As observed during the pre-restoration assessments, every AA scored an A (Figure 5), indicating each of the 24 AAs had at least 5 meters of buffer along 75% to 100% of its perimeter.

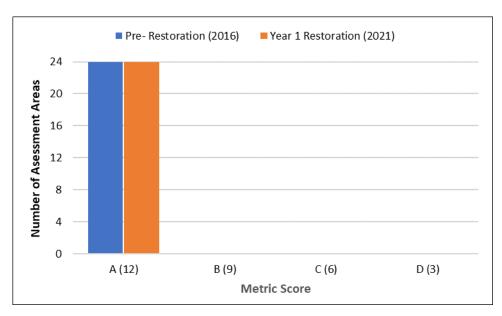


Figure 5 Percent of AA with Buffer

Table 3CRAM Scores by AA

	Wetland Type		Estuarine								Depressional														
Attribute	AA Name	W1	W4	W5	C4	C6	C8	C12	C13	C31	C33	C37	C38	C48	C60	C64	C72	C73	E2	E36	E33	E34	E63	E65	E75
	Aquatic Area Abundance	9	12	12	9	12	9	9	9	9	12	12	12	12	9	6	9	6	9	9	12	12	9	12	12
	% AA with Buffer	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Buffer & Landscape	Average Buffer Width	3	6	6	9	12	12	12	9	12	9	12	12	12	12	12	12	6	12	9	12	12	12	12	12
Connectivity	Buffer Condition	9	12	12	12	12	12	12	12	9	9	12	12	12	12	12	12	6	9	12	12	12	9	9	9
	Attribute Score Raw	16	22	22	20	24	21	21	20	19	22	24	24	24	21	18	21	13	19	20	24	24	19	22	22
	Attribute Score Final	67	92	92	84	100	88	88	84	80	92	100	100	100	88	75	88	55	80	84	100	100	80	92	92
	Water Source	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
	Hydroperiod/Channel Stability	12	9	12	9	9	9	9	9	9	9	9	9	9	9	9	9	9	6	6	12	12	12	12	12
Hydrology	Hydrologic Connectivity	3	3	3	6	9	6	9	9	6	6	9	9	9	9	6	6	6	6	6	9	9	12	12	12
	Attribute Score Raw	21	18	21	21	24	21	24	24	21	21	24	24	24	24	21	21	21	18	18	27	27	30	30	30
	Attribute Score Final	59	50	59	59	67	59	67	67	59	59	67	67	67	67	59	59	59	50	50	75	75	84	84	84
	Structural Patch Richness	12	6	6	9	6	9	6	9	12	9	9	6	12	9	9	12	12	9	6	6	3	3	6	3
Physical Structure	Topographic Complexity	12	3	9	9	3	6	3	9	12	3	6	6	12	12	9	9	9	6	9	6	6	6	6	6
Physical Structure	Attribute Score Raw	24	9	15	18	9	15	9	18	24	12	15	12	24	21	18	21	21	15	15	12	9	9	12	9
	Attribute Score Final	100	38	63	75	38	63	38	75	100	50	63	50	100	88	75	88	88	63	63	50	38	38	50	38
	Number of Plant Layers	9	9	9	9	9	9	9	9	12	9	9	9	12	9	9	9	9	6	9	12	9	12	12	12
	Number of Co-dominant Species	6	9	12	9	12	6	9	12	6	6	6	6	9	9	9	6	12	3	9	6	6	6	6	9
	Percent Invasion	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	9	3	12	12	12
Diatia Stanatana	Plant Community Metric	9	10	11	10	11	9	10	11	10	9	9	9	11	10	10	9	11	7	10	9	6	10	10	11
Biotic Structure	Horizontal Interspersion & Zonation	9	3	6	3	6	3	9	6	9	3	9	6	12	6	9	9	9	3	6	6	6	9	9	12
	Vertical Biotic Structure	12	12	12	3	3	9	9	12	9	3	9	9	12	9	9	6	9	12	12	12	12	9	6	6
	Attribute Score Raw	30	25	29	16	20	21	28	29	28	15	27	24	35	25	28	24	29	22	28	27	24	28	25	29
	Attribute Score Final	84	70	81	45	56	59	78	81	78	42	75	67	98	70	78	67	81	62	78	75	67	78	70	81
	OVERALL AA SCORE:	78	63	74	66	66	68	68	77	80	61	77	71	92	79	72	76	71	64	69	75	70	70	74	74

This page intentionally left blank.

Submetric: Average Buffer Width

The average width of contiguous buffer adjoining the AA is estimated, with a maximum width of 250 meters. This submetric is assessed using straight lines extending out from the AA boundary at regular intervals. The lines are placed in the area already determined to be buffer habitat and are extended from the AA boundary until they hit non-buffer land cover (urban development, parking, large road, etc.) or until they reach the maximum evaluation length of 250 meters. The number of lines and the direction of those lines vary by wetland module used, but the general approach is the same. As observed during the pre-restoration assessments, most AAs scored an A for this submetric (Figure 6), indicating that the average buffer width around these AAs was between 190 and 250 meters. Except for those AAs near the edge of the lagoon or transportation infrastructure, most of the AAs have a large expanse of quality buffer habitat surrounding them.

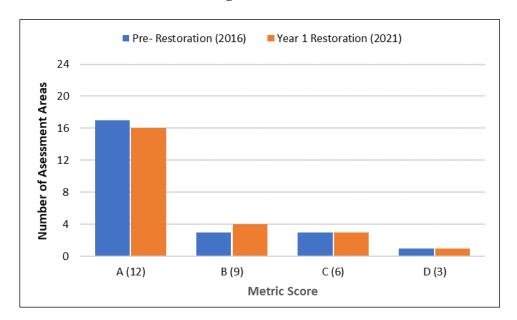
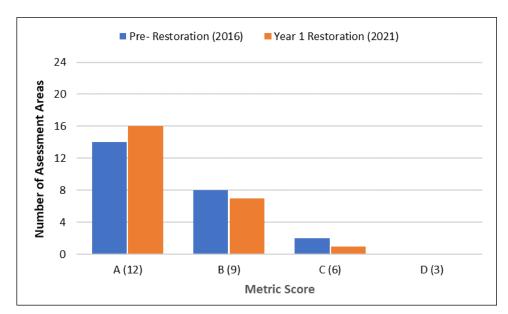
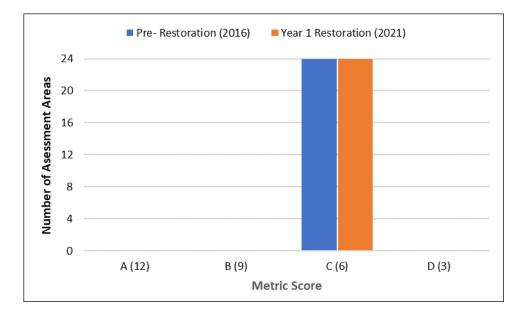


Figure 6 Average Buffer Width

Submetric: Buffer Condition

The condition of the buffer area is determined by the quality of its vegetation cover (native versus non-native species), the overall condition of its substrate (disturbed or undisturbed soils), and intensity of human use. This submetric is scored the same regardless of wetland module used. As observed during pre-restoration assessments, most AAs scored an A or B (Figure 7), with more AAs scoring A during Year 1 assessments. These results indicate that the buffer area surrounding the AAs is characterized by native or intermediate mix of native and non-native vegetation, mostly undisturbed soils, with little or low impact human visitation. As with buffer width, these scores are reasonable and characteristic for wetlands occurring in the lagoon.




Figure 7 Buffer Condition

3.2 ATTRIBUTE 2: HYDROLOGY

3.2.1 Metric 1: Water Source

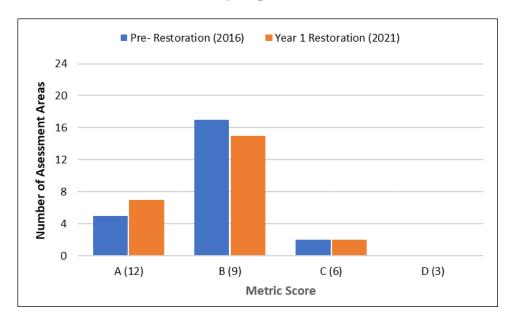
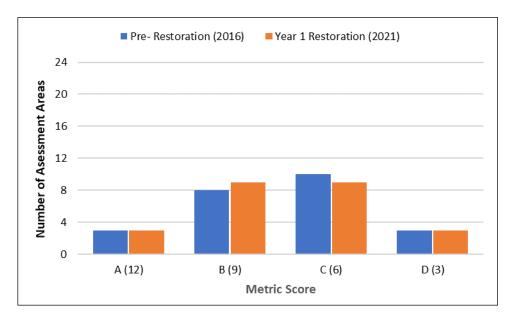
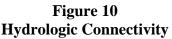

Water sources directly affect the extent, duration, and frequency of the hydrological dynamics within an AA. This metric is assessed based on water sources that enter the AA and their overall effect on the dry-season hydrology of the AA. This metric looks at both artificial inputs (urban runoff) and diversions (dams and drop structures). This metric is scored the same regardless of wetland module used. Mirroring pre-restoration assessment results, every AA scored a C for this metric during Year 1 restoration assessments (Figure 8) because freshwater sources that affect the dry-season condition of the AAs are primarily unnatural, as they are dominated by urban runoff. Much of the immediate drainage basin (2 kilometers upstream) of each AA consists of residential development and commercial lands, although open space areas occur as well. The developed lands contribute urban freshwater to the AAs throughout the year, including during the dry season.

Figure 8 Water Source

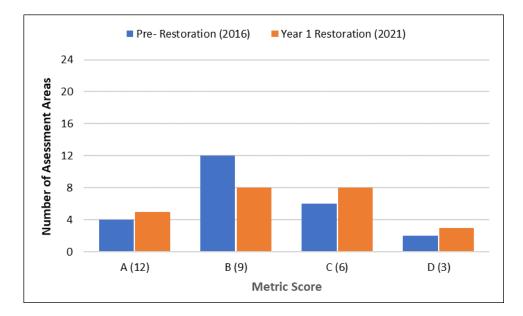
3.2.2 Metric 2: Hydroperiod


Hydroperiod is the characteristic frequency and duration of inundation or saturation of a wetland during a typical year. Similar to pre-restoration assessment results, most AAs scored a B for this metric (Figure 9); however, more AAs scored A during Year 1 assessments. This indicates that there are some artificial (usually human-caused) alterations to inundation and tidal prisms, but they are not severe. The lagoon does have tidal muting but is still exposed to two daily minima and maxima.



3.2.3 Metric 3: Hydrologic Connectivity

Hydrologic connectivity describes the ability of water to flow into or out of the wetland, or to accommodate rising floodwaters without dramatic changes in water level that can result in stress to wetland plants and animals. This metric is scored by assessing the degree to which the lateral movement of rising tides or flood waters is restricted by unnatural features in the AA, its encompassing wetland, or the associated upland transition zone. As observed during pre-restoration assessments, most AAs scored a B or C for this metric (Figure 10), indicating that there are unnatural features such as steep banks, levees, roadgrades, etc. that restrict the lateral movement of flood waters within 500 meters of the AA.



3.3 ATTRIBUTE 3: PHYSICAL STRUCTURE

3.3.1 Metric 1: Structural Patch Richness

Patch richness is the number of different, obvious types of physical surfaces or features (i.e., patch types) that may provide habitat for aquatic, wetland, or riparian species. Each wetland type has different patch types that could be present, differences in total number of patches possible, and different "bins" for scoring. Patch types include features such as wrackline or organic debris, animal mounds, secondary channels, soil cracks, and submerged vegetation. The patch types and definitions for each wetland type can be found in the CRAM User's Manual and field books (CWMW 2013a, 2013b, 2013c). Most AAs scored a B or C for this metric (between three and eight patches were found at most AAs; Figure 11) during Year 1 restoration, matching the pattern observed during pre-restoration surveys; however, four more AAs scored a B during pre-restoration than during year 1. The expectation is for this metric's scores to get higher as restoration progresses.

Figure 11 Structural Patch Richness

3.3.2 Metric 2: Topographic Complexity

Topographic complexity refers to micro- (patches) and macro-topographic (benches) relief and the variety of elevations within a wetland due to physical features and elevation gradients that affect moisture gradients or that influence the path of flowing water. As with Structural Patch Richness, most AAs scored a B or C for this metric (Figure 12) and pre-restoration scores are moderately higher than Year 1 restoration scores. The depressional features did not have benches, which leads to a score of C, and many of the estuarine features had micro-topography but not the macro-topographic complexity to garner an A score. The expectation is for this metric's scores to get higher as restoration progresses.

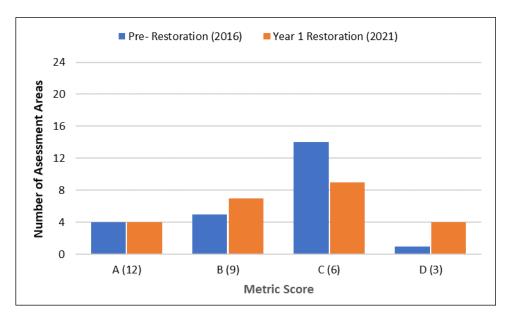


Figure 12 Topographic Complexity

3.4 ATTRIBUTE 4: BIOTIC STRUCTURE

The biotic structure attribute is composed of three metrics, one of which (plant community composition) is further divided into three submetrics: plant community composition, horizontal interspersion, and vertical biotic structure.

3.4.1 Metric 1: Plant Community Composition

The plant community composition metric is composed of three submetrics. The scoring for these submetrics is averaged for an overall metric score that is combined with the other biotic structure metric scores to get an overall attribute score.

Submetric: Number of Plant Layers

To be counted in CRAM, a layer must cover at least 5% of the portion of the AA that is suitable for the layer. The height of vegetation composing a layer and the number of layers expected is different for each wetland module. As observed in pre-restoration surveys, most AAs scored an A or B for this metric (Figure 13), with only one AA scoring a C during Year 1 restoration surveys. This indicates that the AAs had between two and four layers (A and B scores).

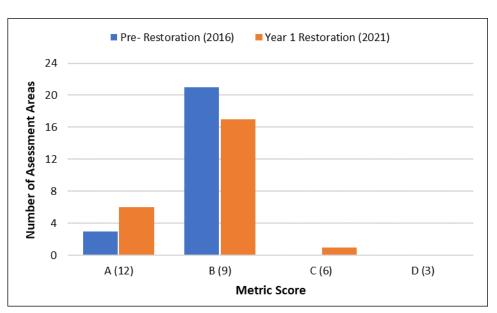


Figure 13 Number of Plant Layers

Submetric: Number of Codominant Species

All living plant species that compose at least 10% relative cover within each plant layer are considered dominant species. Although species may and often do occur as dominant species in multiple layers, an individual species is only counted once for the total number of codominants. The number of codominant species in each "bin" for scoring is dependent on the wetland module used. Most AAs scored a C for this metric during Year 1 restoration assessments (Figure 14), indicating that between two and six codominant species were observed; however, when compared to pre-restoration scores, a higher number of AAs scored a B during Year 1 restoration.

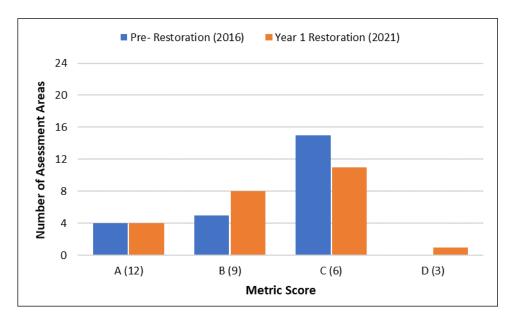
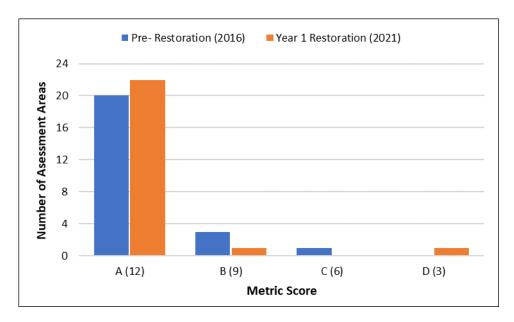



Figure 14 Number of Codominant Species

Submetric: Percent Invasion

The number of invasive codominant species for all plant layers combined is assessed as a percentage of the total number of codominants in the AA. This is true for all wetland modules used. As observed in pre-restoration surveys, most AAs scored an A for this metric (<15% invasion; Figure 15). Only one AA scored a D this monitoring season but is expected to increase its score in subsequent years.

3.4.2 Metric 2: Horizontal Interspersion

This metric is a measure of horizontal biotic structure, which refers to the variety and interspersion of plant "zones." Plant zones are often plant monocultures or obvious multispecies associations that are arrayed along gradients of elevation, moisture, or other environmental factors that seem to affect the plant community organization in a two-dimensional plan view. Interspersion is essentially a measure of the number of distinct plant zones and the amount of edge between them. This is true for all wetland modules used. Most AAs scored a B or C for this metric (Figure 16), mirroring the patterns observed during pre-restoration assessments. These results indicate that most AAs had a moderate to low plan view interspersion.

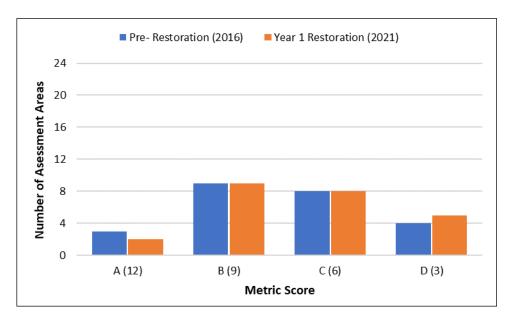
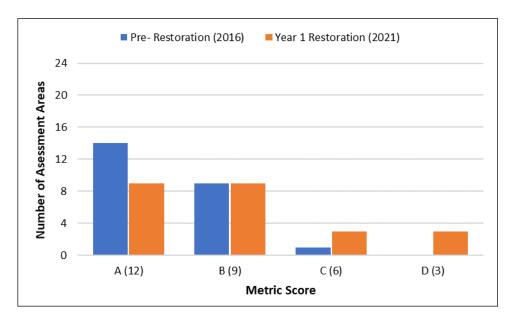
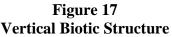




Figure 16 Horizontal Interspersion

3.4.3 Metric 3: Vertical Biotic Structure

The vertical component of biotic structure for estuarine wetlands and the depressional AAs in the lagoon consists of the interspersion and complexity of plant layers. It is assessed as the amount of living vegetation, entrained litter, or detritus across the wetland plain and the amount of space beneath it. Most AAs scored an A or B for this metric (Figure 17). This indicates that most AAs had dense living canopies forming ceilings with varying amounts (half to most) of the plain covered by this dense living canopy (difference between A and B). Although pre-restoration assessments scored higher number of As than Year 1 restoration, a score increase is expected as the restoration program progresses.

4.0 **DISCUSSION**

The average attribute scores and overall CRAM scores for the lagoon are provided in Table 4. Figure 18 shows the distribution of metric and submetric scores as a percent of the total AAs evaluated. Both Table 4 and Figure 18 indicate that the lowest scores were received in the hydrology and physical structure attributes and associated metrics.

The average overall CRAM scores varied slightly between pre- and post-restoration assessments (Table 4), suggesting that the restoration implementation activities had the anticipated effects on wetland condition across San Elijo Lagoon. The Hydrology attribute experienced the biggest positive change in average overall attribute score (+2.4%, Table 4) from pre-restoration conditions, with increases mainly in hydroperiod and hydrological connectivity metrics, whereas Biotic Structure scored the greatest decrease in the average overall attribute score from pre-restoration conditions with -6.1%. Positive changes in the biotic structure of these AAs are anticipated as the restoration program progresses, resulting in smaller differences between pre-and post-restoration assessment in subsequent years.

Year 1 post-restoration CRAM score results confirmed the lack of significant change in Buffer and Landscape Context attribute/metric scores after restoration implementation. Within the Hydrology attribute, Water Source is influenced by the level of development surrounding the lagoon and did not change after restoration. However, Hydroperiod and Hydrological Connectivity metric scores increased after restoration, resulting in a 2.4% increase from pre-restoration conditions in the average overall Hydrology attribute. Following these hydrological changes, positive changes in Physical and Biotic Structure attribute/metric scores are likely to occur at the 24 AAs assessed within San Elijo Lagoon; however, current wetland condition scores for these two attributes are still below the pre-restoration levels observed in 2016 (AECOM 2016).

CRAM Attributes	Pre-Restoration Average CRAM Score (%)	Year 1 - Restoration Average CRAM Score (%)	Relative Change (%)		
Buffer and Landscape Context	87	88	0.4%		
Hydrology	63	65	2.4%		
Physical Structure	66	64	-3.2%		
Biotic Structure	76	72	-6.1%		
Overall CRAM Score	73	72	-1.0%		

 Table 4

 Average Attribute and Overall CRAM Scores

Almost 70% of all CRAM metric/submetric scores recorded during Year 1 restoration for the SELRP AAs were A or B, almost matching the percentage observed during the pre-restoration CRAM monitoring in 2016 (70.5%). Other than a few outliers, current CRAM scores for the 24 AAs included in this analysis are consistent with the Year 1 post-restoration expectations; in fact, A score frequency was slightly higher during Year 1 than in pre-restoration assessment. As described earlier and based on the results of this CRAM analysis, it is anticipated that during the next few years the lagoon AAs will achieve pre-restoration CRAM score levels at a minimum.

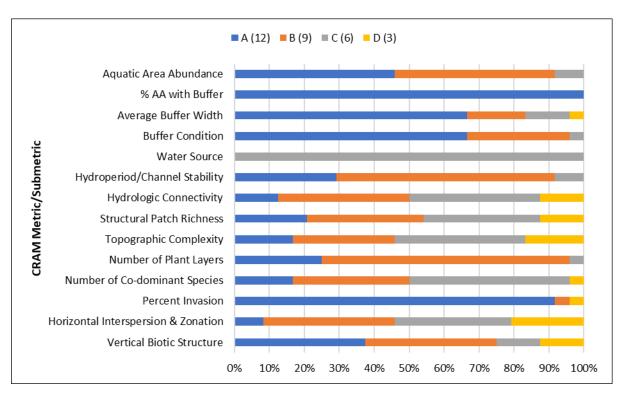


Figure 18 Distribution of Metric/Submetric Scores (A–D) as Percent of AAs

5.0 **REFERENCES**

- AECOM. 2016. San Elijo Lagoon Restoration Project. Pre-Restoration California Rapid Assessment Method Analysis. November.
- California Wetlands Monitoring Workgroup (CWMW). 2013a. California Rapid Assessment Method (CRAM) for Wetlands, User's Manual, Version 6.1, pp. 67.
- -----. 2013b. California Rapid Assessment Method (CRAM) for Wetlands, Perennial Estuarine Wetlands Field Book, Version 6.1 pp. 38.
- -----. 2013c. California Rapid Assessment Method (CRAM) for Wetlands, Depressional Wetlands Field Book, Version 6.1 pp. 43.

This page intentionally left blank.

APPENDIX A

AA SITE PHOTOS

W-1

W-1

W-4

W-4

W-5

W-5

C-4

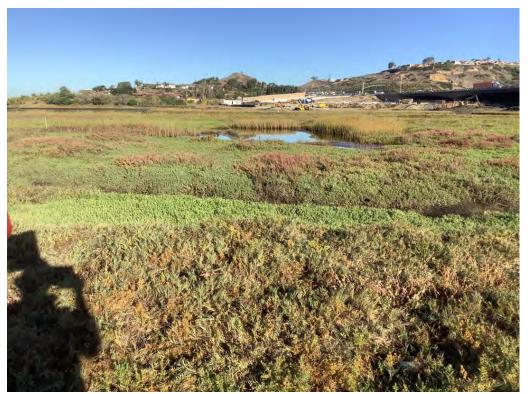
C-4

C-6

C-6

C-8

C-8


C-12

C-13

C-31

C-33

C-37

C-38

C-48

C-60

C-64

C-72

C-73

E-36

E-33

E-63

E-65

E-75

APPENDIX B

AA DATA SHEETS

	Basic	Information	Sheet Perennial	Estuarine Wetlar	nds
		ame: West Basin			
		Elijo Lagoon Rest	toration Project		
	nent Area ID	#: W-1			
Project	Site ID #:		Date: 10)/28/2021	
Assessr	nent Team M	lembers for this	s AA		
Aaron A	Andrews				
	r of AA de: 33.011149	96	Longitu	u de: -117.2784451	
Wetla	nd Sub-type:	erennial Saline		Perennial Non-salir	ne
Re Ot What	her: best describe	es the tidal stage	mpacted Amb	f the time spent in th	Training
		high tide	l	low tide	
Photo	graphic Iden	tification Num	bers and Descrptio	n:	
	Photo ID No.	Description	Latitude	Longitude	Datum
1	WestBasin01 _N_1.jpg		33.0125426	-117.278861111	D_WGS_1984
2	WestBasin01 _N_2.jpg		33.011312	-117.2783084	D_WGS_1984

Site Location Description:

Comments:

AA Name: West Basin 01					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context			Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D))		В	9		
Buffer (based on sub-metrics	/	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	D	3				
Buffer submetric C: Buffer Condition	В	9				
Raw Attribute Score = D+	-[C x (A	x B) ^{1/2}] ^{1/2}		16	Final Attribute Score = (Raw Score/24) x 100	67
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)		I		
			Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			А	12		
Hydrologic Connectivity			D	3		
Raw Attribute Score = s	sum of n	umeric s	scores	21	Final Attribute Score = (Raw Score/36) x 100	59
Attribute 3: Physical Struct	ure Attri	ibute (pp		1		
			Alpha.	Numeric		
Structural Patch Richness			А	12		
Topographic Complexity			А	12		
Raw Attribute Score = s	sum of n	umeric s	scores	24	Final Attribute Score = (Raw Score/24) x 100	100
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	26-34)			
Plant Community Compositi	on (based	d on sub-	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B:	С	6				
Number of Co-dominant species						
Number of Co-dominant species Plant Community submetric C: Percent Invasion	А	12				
Plant Community submetric C: Percent Invasion Pla	nt Comm	12 unity Con uge of subme	*	9		
Plant Community submetric C: Percent Invasion Pla (nu	nt Comm	unity Con	*	9		
Plant Community submetric C: Percent Invasion Pla (nu Horizontal Interspersion	nt Comm	unity Con	etrics A-C)			
Plant Community submetric C: Percent Invasion Pla	nt Comm meric avera	unity Con uge of subme	Petrics A-C) B A	9	Final Attribute Score = (Raw Score/36) x 100	84

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	30			
South	40			
East	100			
West	75			
Average Percentage of Transect Length that is an Aquatic Feature	61			

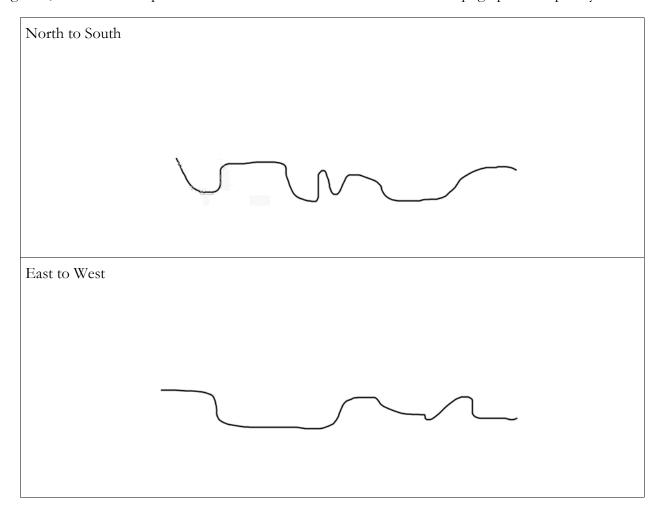
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

0 0	
Line	Buffer Width (m)
Α	25
В	15
С	15
D	15
E	15
F	5
G	5
Н	5
Average Buffer Width *Round to the nearest integer*	13


Worksheet for calculating average buffer width of AA

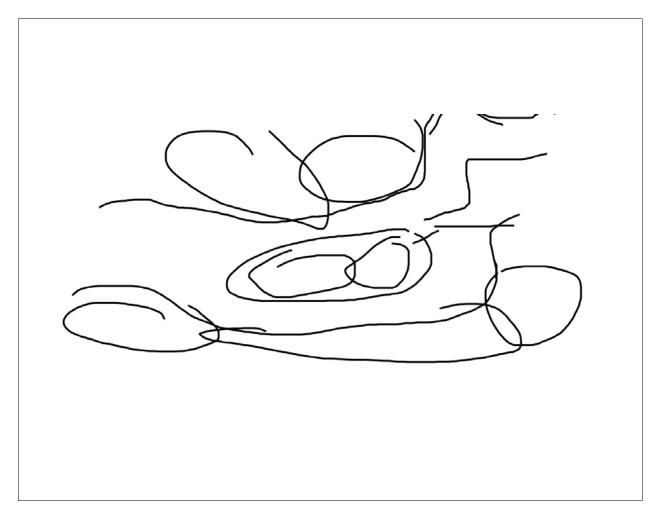
Structural Patch	n Type	Worksheet	for Estarine	Wetlands
------------------	--------	-----------	--------------	----------

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m ³
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	X
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	Χ
Pools or depressions in channels (wet or dry channels)	X
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	9

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Jaumea carnosa	
		Frankenia salina	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Frankenia salina			
Salicornia pacifica			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	3
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landslie	de	other
If yes, how severe is this disturbance?	likely to affe site for next more year	5 or	site no	o affect ext 3-5 ars		kely to affect site next 1-2 years
	depression	al	verna	l pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine		1	ial non- stuarine	v	vet meadow
	lacustrine		seep or	r spring		playa
	Other:					

Table 21: Wetland disturbances and conversions.

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management		
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments	- .	

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		
Industrial/commercial		Х
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

Basic Information Sheet Perennial Estuarine Wetlands							
Assessment Area Name: West Basin 04							
Project Name: San Elijo Lagoon Restoration Project							
	nent Area ID) #: W-4					
Project	Site ID #:		Date: 10)/28/2021			
Assessm	nent Team M	lembers for this	s AA				
Aaron A	Indrews						
	r of AA						
Latitu	de: 33.007095	57	Longitu	de: -117.2775446			
Wetla	nd Sub-type:						
	Pe	erennial Saline		Perennial Non-sali	ne		
AA Ca	tegory:						
Re	storation	Mitigation I	mpacted Amb	ient Reference	Training		
Ot	her:						
What	best describe	es the tidal stage	e over the course of	f the time spent in th	ne field?		
		0	sment be conducted	-			
	high tide low tide						
		0					
Photo	graphic Iden	tification Num	bers and Descrptio	n:			
	Photo ID	Description	Latitude	Longitude	Datum		
1	No. WestBasin04		33.0076476	-117.2774219	D_WGS_1984		
1	_N_1.jpg		33.0070470	-11/.2//421)	D_W00_1701		
2	WestBasin04 _N_2.jpg		33.006895	-117.2776481	D_WGS_1984		
	_1 _2 .)P8						
1							

Site Location Description:

Comments:

AA Name: West Basin 04					Date: 10/28/2021	
Attribute 1: Buffer and Landscape Context (pp. 8-14)			Comments			
			Alpha.	Numeric		
Aquatic Area Abundance (D)		А	12			
Buffer (based on sub-metrics	A-C)					
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	С	6				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		22	Final Attribute Score = (Raw Score/24) x 100	92
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)				
			Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			В	9		
Hydrologic Connectivity			D	3		
Raw Attribute Score = sum of numeric scores			scores	18	Final Attribute Score = (Raw Score/36) x 100	50
Attribute 3: Physical Structure Attribute (pp. 20-25)						
			Alpha.	Numeric		
Structural Patch Richness			С	6		
Topographic Complexity			D	3		
Raw Attribute Score = sum of numeric scores			scores	9	Final Attribute Score = (Raw Score/24) x 100	38
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	26-34)			
Plant Community Composition	on (based Alpha.	d on sub- Numeric	metrics A	-C)		
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	В	9				
Plant Community submetric C: Percent Invasion	А	12				
	nt Comm <i>meric avera</i>	2	nposition etrics A-C)	10		
			3			
Vertical Biotic Structure			А	12		
Raw Attribute Score = sum of numeric scor			scores	25	Final Attribute Score = (Raw Score/36) x 100	70
Overall AA Score (average of four final At		ttribute So	cores)	63		

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind			
Segment Direction	Percentage of Transect Length That is an Aquatic Feature		
North	91		
South	76		
East	73		
West	88		
Average Percentage of Transect Length that is an Aquatic Feature	82		

Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

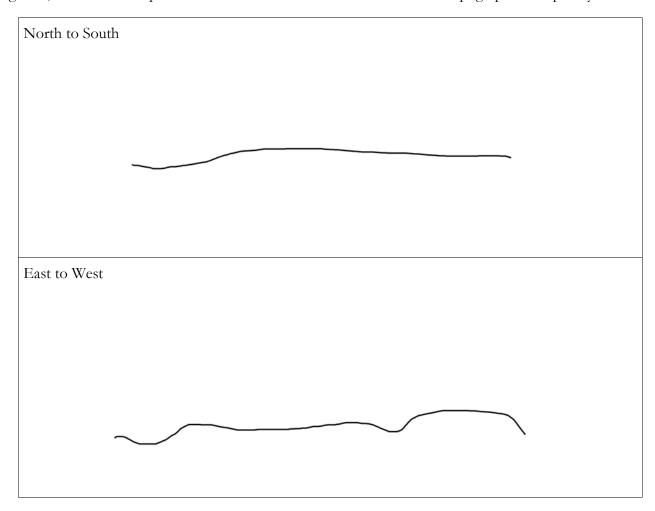
Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

8 8	
Line	Buffer Width (m)
Α	250
В	50
С	30
D	120
Ε	250
F	50
G	20
Н	75
Average Buffer Width *Round to the nearest integer*	106

Worksheet for calculating average buffer width of AA


Structural Patch Type Worksheet for 1	Estarine Wetlands
---------------------------------------	-------------------

ſ

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m^3
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels	
(wet or dry channels)	
Secondary channels	
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	10
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	3

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)

Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Frankenia salina	
		Cressa truxillensis	
		Distichlis spicata	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Frankenia salina			
Salicornia pacifica			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for all layers combined (enter here and use in Table 18)	4
		Percent Invastion *Round to the nearest whole number (integer)*	0

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood	flood fire		landslie	le	other
If yes, how severe is this disturbance?	likely to affect site for next 5 or more years		site n	o affect ext 3-5 ears		kely to affect site next 1-2 years
	depressional		verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confined riverine			fined erine		seasonal estuarine
	perennial sal estuarine	ine	-	ial non- stuarine	V	vet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Table 21: Wetland	disturbances	and con	versions.
-------------------	--------------	---------	-----------

Stressor Checklist Worksheet

X	
Х	

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Filling or dumping of sediment or soils (N/A for restoration areas)			
Grading/ compaction (N/A for restoration areas)			
Plowing/Discing (N/A for restoration areas)			
Resource extraction (sediment, gravel, oil and/or gas)			
Vegetation management			
Excessive sediment or organic debris from watershed			
Excessive runoff from watershed			
Nutrient impaired (PS or Non-PS pollution)			
Heavy metal impaired (PS or Non-PS pollution)			
Pesticides or trace organics impaired (PS or Non-PS pollution)			
Bacteria and pathogens impaired (PS or Non-PS pollution)			
Trash or refuse			
Comments			

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Mowing, grazing, excessive herbivory (within AA)			
Excessive human visitation			
Predation and habitat destruction by non-native vertebrates (e.g.,			
Free cutting/sapling removal			
Removal of woody debris			
Freatment of non-native and nuisance plant species			
Pesticide application or vector control			
Biological resource extraction or stocking (fisheries, aquaculture)			
Excessive organic debris in matrix (for vernal pools)			
Lack of vegetation management to conserve natural resources			
Lack of treatment of invasive plants adjacent to AA or buffer			
Comments			

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Urban residential		Х	
Industrial/commercial			
Military training/Air traffic			
Dams (or other major flow regulation or disruption)			
Dryland farming			
Intensive row-crop agriculture			
Orchards/nurseries			
Commercial feedlots			
Dairies			
Ranching (enclosed livestock grazing or horse paddock or feedlot)			
Transportation corridor		Х	
Rangeland (livestock rangeland also managed for native vegetation)			
Sports fields and urban parklands (golf courses, soccer fields, etc.)			
Passive recreation (bird-watching, hiking, etc.)	Х		
Active recreation (off-road vehicles, mountain biking, hunting, fishing)			
Physical resource extraction (rock, sediment, oil/gas)			
Biological resource extraction (aquaculture, commercial fisheries)			
Comments			

	Basic	Information	Sheet Perennial	Estuarine Wetlan	nds			
		ame: West Basin						
		<u>Elijo Lagoon Rest</u>	oration Project					
Assessment Area ID #: W-5								
Project	Site ID #:		Date: 10)/28/2021				
Assess	ment Team N	Iembers for this	s AA					
Aaron A	Andrews							
Cente	r of AA							
Latitu	i de: 33.005423	31	Longitu	de: -117.2769577				
Latitu	uc. 55.00542.)1	Longitu	uc. -117.2707577				
XX7 .1	10.1							
Wetla	nd Sub-type:							
	Pe	erennial Saline		Perennial Non-salin	ne			
AA Ca	ategory:							
Re	estoration	Mitigation I	mpacted Amb	ient Reference	Training			
Ot	ther:							
			_					
				f the time spent in the	ne field?			
note:	It is recomme	ned that the asses	sment be conducted	during low lide.	_			
		high tide		low tide				
Photo	graphic Iden	tification Numl	pers and Descrptio	n:				
	Photo ID		-		-			
	No.	Description	Latitude	Longitude	Datum			
1	WestBasin05		33.0056092	-117.2764377	D_WGS_1984			
	_N_1.jpg							
2	WestBasin05		33.0041128	-117.2759032	D_WGS_1984			
	_N_2.jpg							

Site Location Description:

Comments:

AA Name: West Basin 05					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context			Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D)		А	12			
Buffer (based on sub-metrics	/	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	С	6				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score = D+	x B) ^{1/2}] ^{1/2}		22	Final Attribute Score = (Raw Score/24) x 100	92	
Attribute 2: Hydrology Att	ribute (p	p. 15-19)		1		
			Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			А	12		
Hydrologic Connectivity			D	3		
Raw Attribute Score = sum of numeric score				21	Final Attribute Score = (Raw Score/36) x 100	59
Attribute 3: Physical Struct	ture Attri	ibute (pp	o. 20-25)	т		
			Alpha.	Numeric		
Structural Patch Richness			С	6		
Topographic Complexity			В	9		
Raw Attribute Score = s	sum of n	umeric s	scores	15	Final Attribute Score = (Raw Score/24) x 100	63
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	26-34)			
Plant Community Compositi	on (based	d on sub-	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	А	12				
Plant Community submetric C: Percent Invasion	А	12				
	nt Comm meric avera	•	*	11		
Horizontal Interspersion		~ ~	C	6		
Vertical Biotic Structure			А	12		
venuear Diotte Structure			I	1	TI I I I I	
Raw Attribute Score = s	sum of n	umeric s	scores	29	Final Attribute Score = (Raw Score/36) x 100	81

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	91				
South	53				
East	97				
West	88				
Average Percentage of Transect Length that is an Aquatic Feature	82				

Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)
Α	160
В	20
С	15
D	25
E	250
F	105
G	75
Н	150
Average Buffer Width *Round to the nearest integer*	100

Worksheet for calculating average buffer width of AA

Structural Patch	n Type	Worksheet	for Estarine	Wetlands
------------------	--------	-----------	--------------	----------

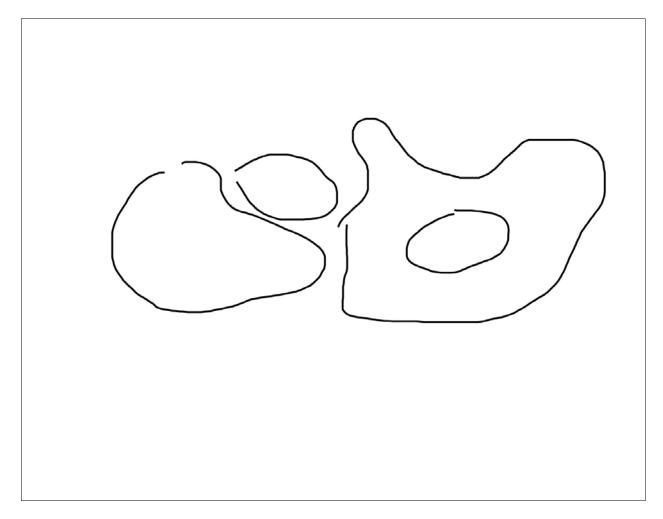
ſ

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m^3
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	Χ
Non-vegetated flats or bare ground	Χ
(sandflats, mudflats, gravel flats, etc.)	
Pannes or pools on floodplain	
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels	
(wet or dry channels)	
Secondary channels	
Shellfish beds (living)	
Soil cracks	Χ
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	5

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Jaumea carnosa	
		Frankenia salina	
		Distichlis littoralis	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Frankenia salina		Juncus acutus subsp. leopoldii	
Salicornia pacifica			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	5
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood	fire		landsli	de	other
If yes, how severe is this disturbance?	likely to affe site for next more year	5 or	site n	o affect ext 3-5 ars		kely to affect site next 1-2 years
	depression	al	verna	l pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial saline estuarine		-	ial non- stuarine	v	vet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel	Х	
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

Present	Significant negative effect on AA
	Present

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Mowing, grazing, excessive herbivory (within AA)			
Excessive human visitation			
Predation and habitat destruction by non-native vertebrates (e.g.,			
Tree cutting/sapling removal			
Removal of woody debris			
Treatment of non-native and nuisance plant species			
Pesticide application or vector control	X		
Biological resource extraction or stocking (fisheries, aquaculture)			
Excessive organic debris in matrix (for vernal pools)			
Lack of vegetation management to conserve natural resources			
Lack of treatment of invasive plants adjacent to AA or buffer			
Comments			

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		Х
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

[al Estuarine Wetla	nas
		me: Central Bas			
		<u>lijo Lagoon Rest</u>	toration Project		
	ment Area ID	#: C-4	2	4.0. / 20.0.1	
Project	Site ID #:		Date:	10/28/2021	
Assess	ment Team M	lembers for this	s AA		
Izzy Sai	ntarsieri (NC),	Rachel Chen			
	er of AA 1de: 33.013228	0290434	Longi	tude: -117.2769046203	39
Wetla	nd Sub-type: Pe	erennial Saline		Perennial Non-sali	ne
O What	ther: best describe	s the tidal stage	e over the course	bient Reference of the time spent in the ed during low tide. low tide	Training
Photo	graphic Iden Photo ID		bers and Descrpt		Determ
	No.	Description	Latitude	Longitude	Datum
1	CentralBasin04 _NE_1.jpg	NE	33.0132416667	-117.2769	D_WGS_1984
2	CentralBasin04 _SW_2.jpg	SW	33.013225	-117.276869444	D_WGS_1984

Site Location Description:

Comments:

AA Name: Central Basin 04					Date: 10/28/2021			
Attribute 1: Buffer and Landscape Context (pp. 8-14)					Comments			
			Alpha.	Numeric				
Aquatic Area Abundance (D)			В	9				
Buffer (based on sub-metrics	/	1						
Buffer submetric A:	Alpha.	Numeric						
Percent of AA with Buffer	А	12						
Buffer submetric B: Average Buffer Width	В	9						
Buffer submetric C: Buffer Condition	А	12						
Raw Attribute Score = D+	-[C x (A	x B) ^{1/2}] ^{1/2}		20	Final Attribute Score = (Raw Score/24) x 100	84		
Attribute 2: Hydrology Att	ribute (p	p. 15-19)	Alpha.	Numeric				
Water Source			С	6				
Hyroperiod			B	9				
Hydrologic Connectivity			C	6				
Raw Attribute Score = sum of numeric sc			_	21	Final Attribute Score = (Raw Score/36) x 100	59		
Attribute 3: Physical Struct	ture Attri	ibute (pr	o. 20-25)		(
		pi on the second s	Alpha.	Numeric				
Structural Patch Richness			В	9				
Topographic Complexity			В	9				
Raw Attribute Score = s	sum of n	umeric s	scores	18	Final Attribute Score = (Raw Score/24) x 100	75		
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	26-34)					
Plant Community Compositi	on (based Alpha.	d on sub- Numeric	metrics A	-C)				
Plant Community Submetric A: Number of plant layers	В	9						
Plant Community submetric B: Number of Co-dominant species	В	9						
Plant Community submetric C: Percent Invasion	А	12						
	unt Comm umeric avera	•	*	10				
Horizontal Interspersion			D	3				
Vertical Biotic Structure			D	3				
Raw Attribute Score = s	sum of n	umeric s	scores	16	Final Attribute Score = (Raw Score/36) x 100	45		
Overall AA Score (average of four final Attribut			ttribute So	cores)	66			
					l			

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	15				
South	100				
East	40				
West	75				
Average Percentage of Transect Length that is an Aquatic Feature	58				

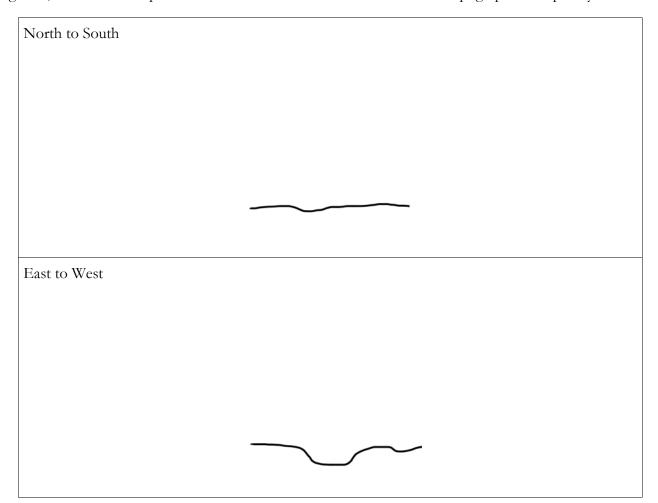
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

0 0	
Line	Buffer Width (m)
Α	75
В	88
С	200
D	250
E	250
F	147
G	147
Н	60
Average Buffer Width *Round to the nearest integer*	152


Worksheet for calculating average buffer width of AA

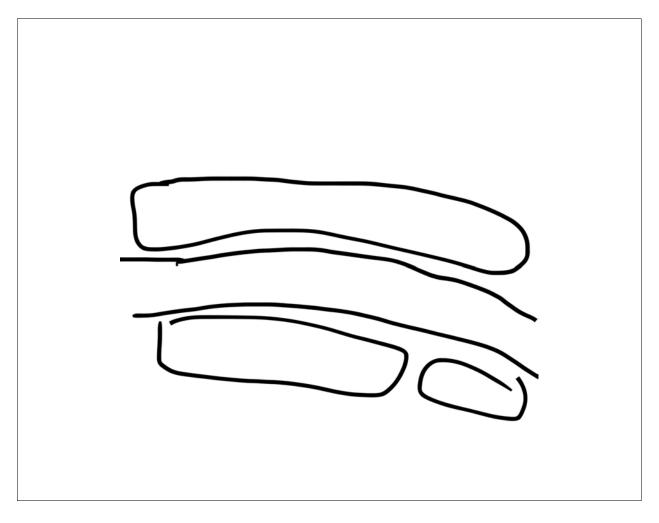
Structural Patch Type Worksheet for Estarine Wetlands	•
---	---

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m^3
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	
Bank slumps or undercut banks in channels or along shoreline	Х
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	Х
Pannes or pools on floodplain	X
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	Χ
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	6

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
Zostera sp.		Jaumea carnosa	
		Frankenia salina	
		Salicornia pacifica	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for all layers combined (enter here and use in Table 18)	4
		Percent Invastion *Round to the nearest whole number (integer)*	0

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire l		de	other
If yes, how severe is this disturbance?	likely to affe site for next more year	5 or	site ne	o affect ext 3-5 ars		kely to affect site next 1-2 years
	depression	al	verna	l pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine		1	ial non- stuarine	v	wet meadow
	lacustrine		seep or	r spring		playa
	Other:					

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel	Х	
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees	Х	
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)	Х	
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)	Х	
Vegetation management	Х	
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Mowing, grazing, excessive herbivory (within AA)			
Excessive human visitation			
Predation and habitat destruction by non-native vertebrates (e.g.,			
Tree cutting/sapling removal			
Removal of woody debris			
Treatment of non-native and nuisance plant species			
Pesticide application or vector control			
Biological resource extraction or stocking (fisheries, aquaculture)			
Excessive organic debris in matrix (for vernal pools)			
Lack of vegetation management to conserve natural resources			
Lack of treatment of invasive plants adjacent to AA or buffer			
Comments	L		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial	Х	
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor	Х	
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)	Х	
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

				Estuarine Wetlan	nds
		me: Central Bas			
,		<u>lijo Lagoon Rest</u>	oration Project		
	ment Area ID	#: C-6	Deter 10	0/20/2021	
,	Site ID #:			0/28/2021	
sessi	ment Team M	lembers for this	AA		
Ly Gai	ntarsieri (NC), T	Kacher Chen			
	er of AA ade: 33.012133	4363083	Longitu	ı de: -117.2773204465	56
Wetla	and Sub-type: Pe	erennial Saline		Perennial Non-sali	ne
What		ned that the asses	e over the course of sment be conducted	0	ne field?
		high tide		low tide	
noto	Photo ID No.	Description	Ders and Descrptio	n: Longitude	Datum
	CentralBasin06	NE	33.0120361111	-117.277313889	D_WGS_1984
1	_NE_1.jpg			1	
1 2	_NE_1.jpg CentralBasin06 _SE_2.jpg	Moved point to SE	33.0122888889	-117.277397222	D_WGS_1984
	CentralBasin06	Moved point to SE SW	33.0122888889 33.0128444444	-117.277397222 -117.276708333	D_WGS_1984 D_WGS_1984

Site Location Description:

Comments:

AA Name: Central Basin 06					Date: 10/28/2021
Attribute 1: Buffer and Lan	Comments				
			Alpha.	Numeric	
Aquatic Area Abundance (D)	1		А	12	
Buffer (based on sub-metrics		I			
Buffer submetric A:	Alpha.	Numeric			
Percent of AA with Buffer	А	12			
Buffer submetric B: Average Buffer Width	А	12			
Buffer submetric C: Buffer Condition	А	12			
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		24	Final Attribute Score = $(Raw Score/24) \times 100$ 10
Attribute 2: Hydrology Attr	ibute (p	p. 15-19)			
			Alpha.	Numeric	
Water Source			С	6	
Hyroperiod			В	9	
Hydrologic Connectivity			В	9	
Raw Attribute Score = s	um of n	umeric s	scores	24	Final Attribute Score = (Raw Score/36) x 100
Attribute 3: Physical Struct	ure Attri	ibute (pj	o. 20-25)		
			Alpha.	Numeric	
Structural Patch Richness			С	6	
Topographic Complexity			D	3	
Raw Attribute Score = s	um of n	scores	9	Final Attribute Score = (Raw Score/24) x 100 38	
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)		
Plant Community Composition	o <mark>n (basec</mark> Alpha.	d on sub- Numeric	metrics A	<u>-C)</u>	
Plant Community Submetric A: Number of plant layers	В	9			
Plant Community submetric B: Number of Co-dominant species	А	12			
Plant Community submetric C: Percent Invasion	А	12			
		unity Con ge of subme	nposition etrics A-C)	11	
Horizontal Interspersion			С	6	
Vertical Biotic Structure			D	3	
Raw Attribute Score = s	um of n	umeric s	scores	20	Final Attribute Score = (Raw Score/36) x 100 50
Overall AA Score (avera	ge of for	ır final A	ttribute So	cores)	66

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	40				
South	91				
East	98				
West	74				
Average Percentage of Transect Length that is an Aquatic Feature	76				

Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

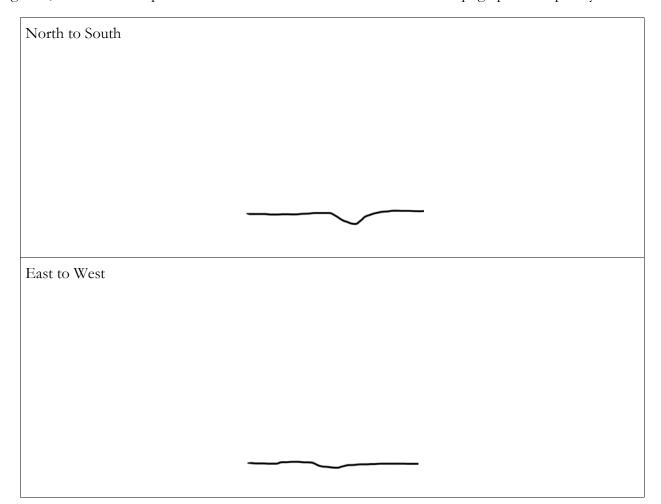
Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)
Α	200
В	176
С	250
D	250
E	250
F	191
G	162
Н	250
Average Buffer Width *Round to the nearest integer*	216

Worksheet for calculating average buffer width of AA


Structural Patch Type Worksheet for Estarine Wetlands	•
---	---

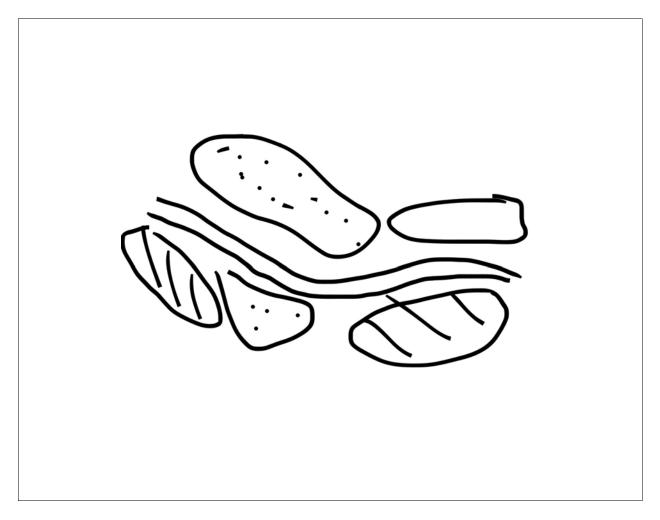
Γ

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m ³
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	
Large Woody Debris	
Non-vegetated flats or bare ground	Χ
(sandflats, mudflats, gravel flats, etc.)	
Pannes or pools on floodplain	
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels	Χ
(wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	3

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Jaumea carnosa	
		Frankenia salina	
		Distichlis spicata	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Frankenia salina			
Salicornia pacifica			
Spartina foliosa			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for all layers combined (enter here and use in Table 18)	5
		Percent Invastion *Round to the nearest whole number (integer)*	0

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landslide		other
If yes, how severe is this disturbance?	likely to affe site for next ! more year	5 or	site n	o affect ext 3-5 ears		kely to affect site next 1-2 years
	depression	al	verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine	ine	1	ial non- stuarine	v	wet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel	Х	
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees	Х	
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Filling or dumping of sediment or soils (N/A for restoration areas)			
Grading/ compaction (N/A for restoration areas)	Х		
Plowing/Discing (N/A for restoration areas)			
Resource extraction (sediment, gravel, oil and/or gas)	Х		
Vegetation management	Х		
Excessive sediment or organic debris from watershed			
Excessive runoff from watershed			
Nutrient impaired (PS or Non-PS pollution)			
Heavy metal impaired (PS or Non-PS pollution)			
Pesticides or trace organics impaired (PS or Non-PS pollution)			
Bacteria and pathogens impaired (PS or Non-PS pollution)			
Trash or refuse			
Comments			

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Mowing, grazing, excessive herbivory (within AA)			
Excessive human visitation			
Predation and habitat destruction by non-native vertebrates (e.g.,			
Tree cutting/sapling removal			
Removal of woody debris			
Treatment of non-native and nuisance plant species	X		
Pesticide application or vector control			
Biological resource extraction or stocking (fisheries, aquaculture)			
Excessive organic debris in matrix (for vernal pools)			
Lack of vegetation management to conserve natural resources			
Lack of treatment of invasive plants adjacent to AA or buffer			
Comments			

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Urban residential	Х		
Industrial/commercial	Х		
Military training/Air traffic			
Dams (or other major flow regulation or disruption)			
Dryland farming			
Intensive row-crop agriculture			
Orchards/nurseries			
Commercial feedlots			
Dairies			
Ranching (enclosed livestock grazing or horse paddock or feedlot)			
Transportation corridor	Х		
Rangeland (livestock rangeland also managed for native vegetation)			
Sports fields and urban parklands (golf courses, soccer fields, etc.)			
Passive recreation (bird-watching, hiking, etc.)	Х		
Active recreation (off-road vehicles, mountain biking, hunting, fishing)			
Physical resource extraction (rock, sediment, oil/gas)	Х		
Biological resource extraction (aquaculture, commercial fisheries)			
Comments			

r	Basic	Information	Sheet Perenni	al Estuarine Wetla	nds	
		Name: Central F				
Project	Name: San E	lijo Lagoon Rest	toration Project			
	ment Area ID	#: C-8				
Project	Site ID #:		Date:	10/28/2021		
Assess	ment Team M	lembers for this	s AA			
Izzy Sar	ntarsieri (NC),	Rachel Chen				
	er of AA ade: 33.011241	2246252	Long	tude: -117.2753662896	5	
Latitt	ide. 55.011241	2240232	Long	tuue. -117.2755002070	5	
Wetla	nd Sub-type: Pe	erennial Saline		Perennial Non-salii	ne	
0	ther:		1	ibient Reference	Training	
				of the time spent in th ed during low tide.	ne field?	
i voite.	it is recomme	fied that the asse		ed during low lide.	_	
		high tide		low tide		
Photo	ographic Iden	tification Num	bers and Descrpt	ion:		
	Photo ID		Tatitada	T	Determ	
	No.	Description	Latitude	Longitude	Datum	
1	CentralBasin08 _SW_1.jpg	SW	33.0112416667	-117.275366667	D_WGS_1984	
2	CentralBasin08 _W_2.jpg	West	33.0102666667	-117.274402778	D_WGS_1984	

Site Location Description:

Comments:

AA Name: Central Basin 08					Date: 10/28/2021	
Attribute 1: Buffer and Land	lscape	Context			Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D)			В	9		
Buffer (based on sub-metrics		1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	А	12				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score = D+[C x (A	x B)½]½		21	Final Attribute Score = (Raw Score/24) x 100	88
Attribute 2: Hydrology Attri	bute (p	p. 15-19)				
			Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			В	9		
Hydrologic Connectivity			С	6		
Raw Attribute Score = sum of numeric scores 21			21	Final Attribute Score = (Raw Score/36) x 100	59	
Attribute 3: Physical Structure Attribute (pp. 20-25)						
			Alpha.	Numeric		
Structural Patch Richness			В	9		
Topographic Complexity			С	6		
Raw Attribute Score = su	ım of n	umeric s	scores	15	Final Attribute Score = (Raw Score/24) x 100	63
Attribute 4: Biotic Structure	Attribu	ite (pp. 2	26-34)			
Plant Community Composition	o <mark>n (basec</mark> Alpha.	d on sub- Numeric	metrics A	-C)		
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	С	6				
Plant Community submetric C: Percent Invasion	А	12				
		unity Con ge of subme	·	9		
Horizontal Interspersion			D	3		
			В	9		
Vertical Biotic Structure			2			
Vertical Biotic Structure Raw Attribute Score = su	um of n	umeric s		21	Final Attribute Score = (Raw Score/36) x 100	59

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	35			
South	90			
East	80			
West	60			
Average Percentage of Transect Length that is an Aquatic Feature	66			

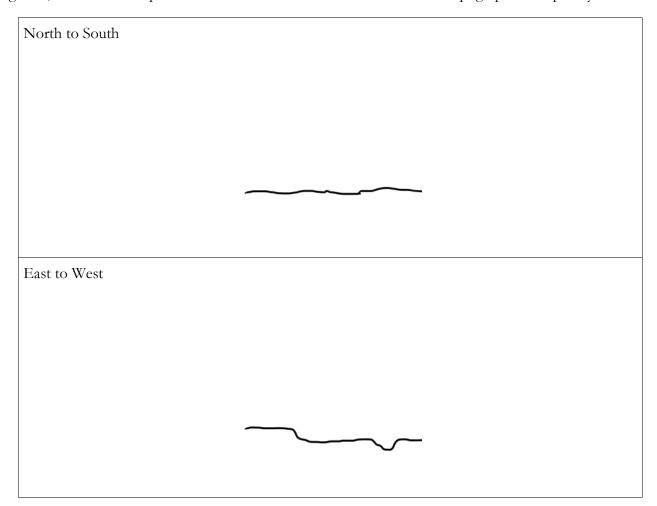
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

8 8				
Line	Buffer Width (m)			
Α	220			
В	220			
С	250			
D	250			
E	250			
F	240			
G	220			
Н	250			
Average Buffer Width *Round to the nearest integer*	238			


Worksheet for calculating average buffer width of AA

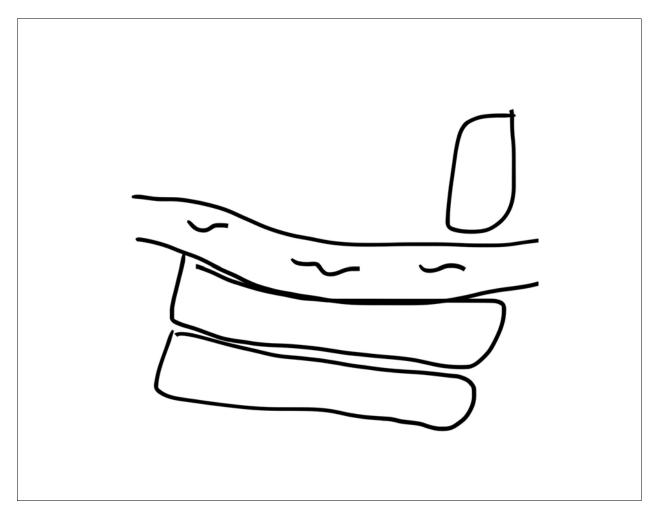
Structural Patch Type Worksheet for Estarine Wetlands	•
---	---

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	$3 \mathrm{m}^3$
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	Χ
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	Χ
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	7

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Salicornia pacifica	
Madiner (0.2. 0.75m)	I	T-11 (0.75 1.5m)	T
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Spartina foliosa		Spartina foliosa	
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	2
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landsli	de	other
If yes, how severe is this disturbance?	likely to affe site for next more year	5 or	site n	o affect ext 3-5 ars		kely to affect site next 1-2 years
	depression	al	verna	l pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine	ine	-	ial non- stuarine	v	vet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Stressor Checklist Worksheet

Present	Significant negative effect on AA
Х	
Х	
Х	
	X

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)	Х	
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)	Х	
Vegetation management	Х	
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments	L	

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial	Х	
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor	Х	
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)	Х	
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

				Estuarine Wetlan	nds
Assess	ment Area Na	ime: Central Bas	in 12		
Project	: Name: San E	lijo Lagoon Rest	oration Project		
Assess	ment Area ID	#: C-12			
Project	Site ID #:		Date: 10	0/28/2021	
Assess	ment Team M	lembers for this	s AA		
Izzy Sat	ntarsieri (NC),	Rachel Chen			
<u> </u>	(-);				
Cente	er of AA				
		5000400	T •.	1 447 070047504	<i>(</i> 1
Latiti	ude: 33.011829	5923183	Longitu	ide: -117.2729017586	61
Wetla	and Sub-type:				
	Pe	erennial Saline		Perennial Non-salir	ne
AA C	ategory:				
R	estoration	Mitigation I	mpacted Amb	ient Reference	Training
		0	1		0
O	ther:				
W/hat	hast describe	a tha tidal atag	a away the course of	f the time enout in th	na fiald?
		•	sment be conducted	f the time spent in the	le neiu?
INOIC.		fied that the asse		during low lide.	
		high tide		low tide	
		0			
D1	1. 11				
Photo	<u> </u>	tification Num	bers and Descrptio	on:	,
	Photo ID	Description	Latitude	Longitude	Datum
	No.	Description			
1	CentralBasin12		33.0114472222	-117.273830556	D_WGS_1984
	_S_1.jpg				
2	CentralBasin12	South	33.0114472222	-117.273830556	D_WGS_1984
	_S_2.jpg				

Site Location Description:

Comments:

AA Name: Central Basin 12					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context	(pp. 8-14))	Comments	
	-		Alpha.	Numeric		
Aquatic Area Abundance (D)			В	9		
Buffer (based on sub-metrics	/	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	А	12				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score = D+	x B) ^{1/2}] ^{1/2}		21	Final Attribute Score = (Raw Score/24) x 100	88	
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)				
			Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			В	9		
Hydrologic Connectivity			В	9		
Raw Attribute Score = sum of numeric s			scores	24	Final Attribute Score = (Raw Score/36) x 100	67
Attribute 3: Physical Struct	ure Attri	ibute (pp	o. 20-25)			
-			Alpha.	Numeric		
Structural Patch Richness			С	6		
Topographic Complexity			D	3		
Raw Attribute Score = s	sum of n	umeric s	scores	9	Final Attribute Score = (Raw Score/24) x 100	38
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)			
Plant Community Compositie	on (based	d on sub-	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	В	9				
Plant Community submetric C: Percent Invasion	А	12				
		unity Con ge of subme	*	10		
Horizontal Interspersion	•		В	9		
Vertical Biotic Structure			В	9		
Raw Attribute Score = s	sum of n	umeric s	scores	28	Final Attribute Score = (Raw Score/36) x 100	78
Overall AA Score (avera	ge of for	ır final A	ttribute So	cores)	68	

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	50				
South	100				
East	40				
West	95				
Average Percentage of Transect Length that is an Aquatic Feature	71				

Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)
Α	250
В	200
С	220
D	250
E	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	240

Worksheet for calculating average buffer width of AA

Structural Patch Type Worksheet for 1	Estarine Wetlands
---------------------------------------	-------------------

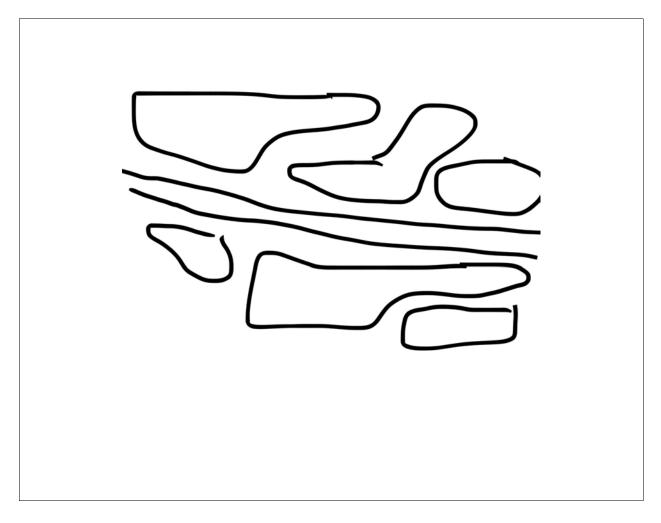
STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m^3
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground	
(sandflats, mudflats, gravel flats, etc.)	
Pannes or pools on floodplain	
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels	Χ
(wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	3

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

North to South	
East to West	
	\sim

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Jaumea carnosa	
		Salicornia pacifica	
		Frankenia salina	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Spartina foliosa			
•			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	4
		(enter here and use in Table 18)	
		Percent Invastion	
		Round to the nearest whole number (integer)	0

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire landslie		le	other
If yes, how severe is this disturbance?	likely to affe site for next more year	5 or	site n	o affect ext 3-5 ears		kely to affect site next 1-2 years
	depression	al	verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine		-	ial non- stuarine	V	wet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Table 21: Wetla	nd disturbance	s and conversions.
-----------------	----------------	--------------------

,

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel	Х	
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)	Х	
Vegetation management	Х	
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		I

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial	Х	
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor	Х	
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)	Х	
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

Basic Information Sheet Perennial Estuarine Wetlands							
	Assessment Area Name: Central Basin 13						
Project Name: San Elijo Lagoon Restoration Project							
Assessment Area ID #: C-13							
Project S	Project Site ID #: Date: 10/28/2021						
Assessme	ent Team M	lembers for this	s AA				
Aaron An	ndrews						
Center	of AA						
Latitud	e: 33.010485	2	Longitu	de: -117.2703305			
Wetland	d Sub-type:						
	Pe	erennial Saline		Perennial Non-salin	ne		
AA Cate	egory.						
	2 .						
Rest	toration	Mitigation I	mpacted Ambi	ent Reference	Training		
Oth	er:						
		0		the time spent in th	ne field?		
Note: It	is recommen	hed that the asse	sment be conducted	during low tide.	_		
		high tide		low tide			
Photog	raphic Iden	tification Num	bers and Description	n•			
Photographic Identification Numbers and Descrption:							
	Photo ID		T · 1	- · ·			
	Photo ID No.	Description	Latitude	Longitude	Datum		
1 0		Description	Latitude 33.0104856	Longitude -117.2703306	Datum D_WGS_1984		
	No. CentralBasin13 _N_1.jpg CentralBasin13	Description		2			
	No. CentralBasin13 _N_1.jpg	Description	33.0104856	-117.2703306	D_WGS_1984		
	No. CentralBasin13 _N_1.jpg CentralBasin13	Description	33.0104856	-117.2703306	D_WGS_1984		
	No. CentralBasin13 _N_1.jpg CentralBasin13	Description	33.0104856	-117.2703306	D_WGS_1984		
	No. CentralBasin13 _N_1.jpg CentralBasin13	Description	33.0104856	-117.2703306	D_WGS_1984		
	No. CentralBasin13 _N_1.jpg CentralBasin13	Description	33.0104856	-117.2703306	D_WGS_1984		

Site Location Description:

Comments:

AA Name: Central Basin 13					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context	(pp. 8-14))	Comments	
	_		Alpha.	Numeric		
Aquatic Area Abundance (D)			В	9		
Buffer (based on sub-metrics	/	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	В	9				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		20	Final Attribute Score = (Raw Score/24) x 100	84
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)				
	_		Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			В	9		
Hydrologic Connectivity			В	9		
Raw Attribute Score = sum of numeric sc			scores	24	Final Attribute Score = (Raw Score/36) x 100	67
Attribute 3: Physical Struct	ure Attri	ibute (pj	<u>o. 20-25)</u>	-		
			Alpha.	Numeric		
Structural Patch Richness			В	9		
Topographic Complexity			В	9		
Raw Attribute Score = s	sum of n	umeric s	scores	18	Final Attribute Score = (Raw Score/24) x 100	75
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)			
Plant Community Compositie		d on sub-	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	А	12				
Plant Community submetric C: Percent Invasion	А	12				
		unity Con ge of subme	*	11		
Horizontal Interspersion		-	С	6		
Vertical Biotic Structure			А	12		
Raw Attribute Score = s	sum of n	umeric s	scores	29	Final Attribute Score = (Raw Score/36) x 100	81
Overall AA Score (avera	ge of for	ır final A	tt r ibute So	cores)	77	

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind			
Segment Direction	Percentage of Transect Length That is an Aquatic Feature		
North	24		
South	100		
East	3		
West	100		
Average Percentage of Transect Length that is an Aquatic Feature	57		

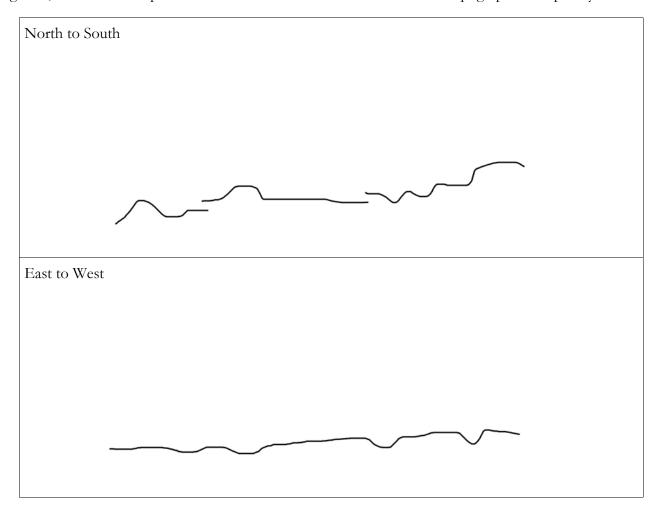
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

8 8	
Line	Buffer Width (m)
Α	118
В	25
С	15
D	250
E	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	176


Worksheet for calculating average buffer width of AA

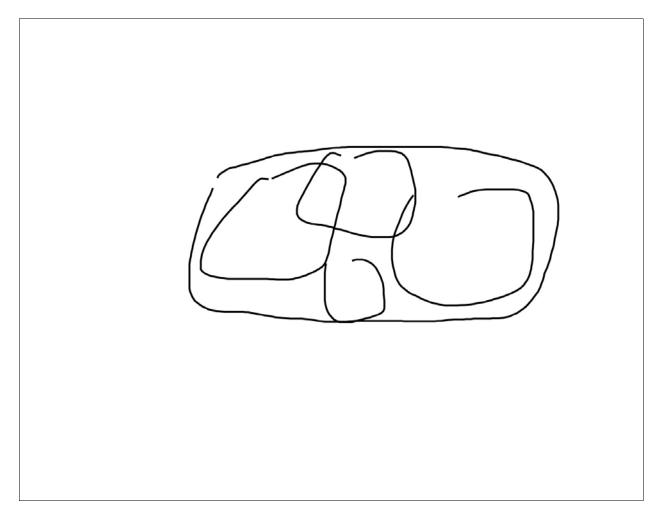
Structural Patch	n Type	Worksheet	for Estarine	Wetlands
------------------	--------	-----------	--------------	----------

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m^3
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	Χ
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	6

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Distichlis spicata	
		Jaumea carnosa	
		Frankenia salina	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Spartina foliosa			
Salicornia pacifica			
Frankenia salina			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for all layers combined (enter here and use in Table 18)	5
		Percent Invastion *Round to the nearest whole number (integer)*	0

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landslie	le	other
If yes, how severe is this disturbance?	likely to affe site for next ! more year	5 or	site n	o affect ext 3-5 ars		kely to affect site next 1-2 years
	depression	al	verna	l pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?				fined erine		seasonal estuarine
	perennial sal estuarine	ine	-	ial non- stuarine	V	wet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

Present	Significant negative effect on AA
	Present

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Free cutting/sapling removal		
Removal of woody debris		
Freatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		X
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic	Information	Sheet Perennial	Estuarine Wetlan	nds
Assessment Area Name: Central Basin 31					
Project Name: San Elijo Lagoon Restoration Project					
	ment Area ID	#: C-31			
Project	Site ID #:		Date: 10	0/28/2021	
Assess	ment Team M	lembers for this	s AA		
Derrick	Mathews, Tito	o Marchant (NC))		
	er of AA ade: 33.007572	27783246	Longitu	u de: -117.26435474024	4
Wetla	nd Sub-type: Pe	erennial Saline		Perennial Non-salir	ne
Ro O What	AA Category: Restoration Mitigation Impacted Ambient Reference Training Other: Pre-restoration Other: Pre-restoration Vertice Note: In the field? What best describes the tidal stage over the course of the time spent in the field? Note: It is recommend that the assessment be conducted during low tide. high tide low tide				
Photo	graphic Iden	tification Num	bers and Descrptio	on:	
	Photo ID No.	Description	Latitude	Longitude	Datum
1	CentralBasin31 _W_1.jpg		33.0075583333	-117.264344444	D_WGS_1984
2	CentralBasin31 _NW_2.jpg		33.0075833333	-117.264358333	D_WGS_1984

Site Location Description:

Comments:

AA Name: Central Basin 31					Date: 10/28/2021
Attribute 1: Buffer and Landscape Context (pp. 8-14)			Comments		
			Alpha.	Numeric	
Aquatic Area Abundance (D)			В	9	
Buffer (based on sub-metrics	/	1			
Buffer submetric A:	Alpha.	Numeric			
Percent of AA with Buffer	А	12			
Buffer submetric B: Average Buffer Width	А	12			
Buffer submetric C: Buffer Condition	В	9			
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		19	Final Attribute Score = (Raw Score/24) x 100 80
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)			
	-		Alpha.	Numeric	
Water Source			С	6	
Hyroperiod			В	9	
Hydrologic Connectivity			С	6	
Raw Attribute Score = s	sum of n	umeric s	scores	21	Final Attribute Score = (Raw Score/36) x 100 59
Attribute 3: Physical Struct	ure Attr	ibute (pj	o. 20-25)		
-			Alpha.	Numeric	
Structural Patch Richness			А	12	
Topographic Complexity			А	12	
Raw Attribute Score = s	sum of n	umeric s	scores	24	Final Attribute Score = (Raw Score/24) x 100
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)		
Plant Community Compositie	<u>on (based</u>	<u>d on sub-</u>	metrics A	-C)	
	Alpha.	Numeric			
Plant Community Submetric A: Number of plant layers	А	12			
Plant Community submetric B: Number of Co-dominant species	С	6			
Plant Community submetric C: Percent Invasion	А	12			
		unity Con age of subme	*	10	
Horizontal Interspersion			В	9	
Vertical Biotic Structure			В	9	
Raw Attribute Score = s	sum of n	umeric s	scores	28	Final Attribute Score = (Raw Score/36) x 100 78
Overall AA Score (avera	ge of fou	ur final A	ttribute So	cores)	80

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	38				
South	12				
East	88				
West	100				
Average Percentage of Transect Length that is an Aquatic Feature	60				

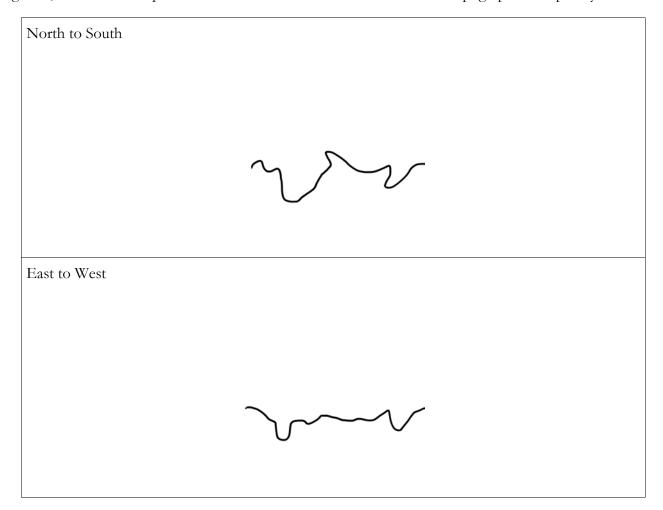
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)
Α	162
В	103
С	162
D	250
E	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	210


Worksheet for calculating average buffer width of AA

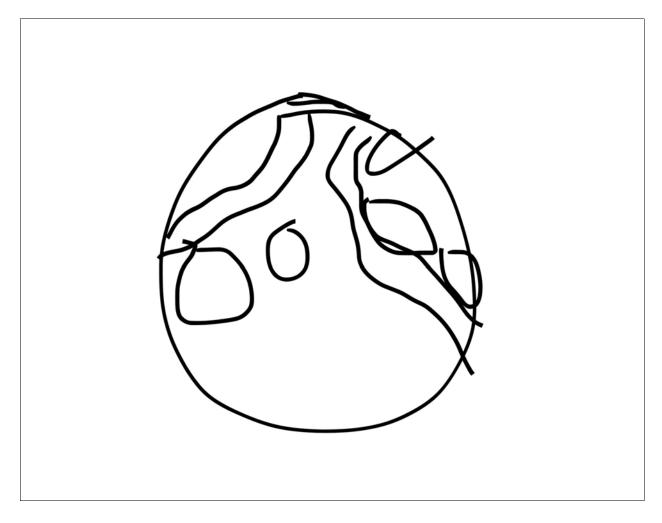
Structural Patch Type Worksheet for Estarine Wetlands	,
---	---

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m ³
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	X
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	Χ
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	Χ
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	Χ
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	Χ
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	11

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
Phyllospadix scouleri		Jaumea carnosa	
M. 1	T		T
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Spartina foliosa		Spartina foliosa	
Salcornia pacifica			
Frankenia salina			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	5
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes	No		No		No		No				
If yes, was it a flood, fire, landslide or other?	flood		fire	landslie	le	other						
If yes, how severe is this disturbance?	likely to affect site for next 5 or more years		site for next 5 or		site no	o affect ext 3-5 ars		kely to affect site next 1-2 years				
	depression	al	verna	l pool		vernal pool system						
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confined confined riverine riverine				seasonal estuarine							
	perennial sal estuarine		1	ial non- stuarine	v	vet meadow						
	lacustrine		seep or	r spring		playa						
	Other:											

Table 21: Wetland	disturbances	and	conversions.
-------------------	--------------	-----	--------------

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)	Х	
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management		
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments	L	

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial	Х	
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic	Information	Sheet Perennial	Estuarine Wetlan	nds			
		ame: Central Bas						
		Elijo Lagoon Rest	coration Project					
	ment Area ID	#: C-33		· · ·				
Project Site ID #: Date: 10/28/2021								
Assess	ment Team M	lembers for this	s AA					
Alexandra Fowler, Jordan Luts (NC)								
Canto	er of AA							
Latitu	ide: 33.007560)689033	Longitu	ide: -117.2761359998	19			
Wetla	nd Sub-type:							
wettu								
	Pe	erennial Saline		Perennial Non-salir	ne			
AA Ca	ategory:							
	8.							
Re	estoration	Mitigation I	mpacted Amb	ient Reference	Training			
Ot	ther:							
	uiter.							
				f the time spent in th	ne field?			
Note:	It is recomme	ned that the asse	sment be conducted	during low tide.				
		high tide		low tide				
		ingii uuc	l	low lide	-			
Photo	graphic Iden	tification Num	bers and Descrptio	n:				
	Photo ID	Description	Latitude	Longitude	Datum			
	No.	-	Latitude					
1	C33_NW_	Looking NW	33.0076555556	-117.275269444	D_WGS_1984			
	1.jpg							
			33.0076555556	-117.275269444	D_WGS_1984			
2	C33_N_2.jpg		55.0070555550					
2	C33_N_2.jpg							
2	C33_N_2.jpg							
2	C33_N_2.jpg		55.0070555555					
2	C33_N_2.jpg							
2	C33_N_2.jpg							
2	C33_N_2.jpg							

Site Location Description:

Comments:

AA Name: Central Basin 33					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context	(pp. 8-14)		Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D)			А	12		
Buffer (based on sub-metrics	/	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	В	9				
Buffer submetric C: Buffer Condition	В	9				
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		22	Final Attribute Score = (Raw Score/24) x 100	92
Attribute 2: Hydrology Attr	ribute (p	p. 15-19))			
	-	-	Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			В	9		
Hydrologic Connectivity			С	6		
Raw Attribute Score = s	um of n	umeric s	scores	21	Final Attribute Score = (Raw Score/36) x 100	59
Attribute 3: Physical Struct	ure Attri	ibute (pj	o. 20-25)			
-			Alpha.	Numeric		
Structural Patch Richness			В	9		
Topographic Complexity			D	3		
Raw Attribute Score = s	sum of n	umeric s	scores	12	Final Attribute Score = (Raw Score/24) x 100	50
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)			
Plant Community Composition	on (based	d on sub-	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	С	6				
Plant Community submetric C: Percent Invasion	А	12				
		unity Con uge of subme		9		
Horizontal Interspersion			D	3		
Vertical Biotic Structure			D	3		
Raw Attribute Score = s	um of n	umeric s	scores	15	Final Attribute Score = (Raw Score/36) x 100	42
Overall AA Score (avera	ge of for	ur final A	ttribute So	cores)	61	

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	100			
South	56			
East	100			
West	85			
Average Percentage of Transect Length that is an Aquatic Feature	85			

Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
Ε	250
F	50
G	50
Н	75
Average Buffer Width *Round to the nearest integer*	178


Worksheet for calculating average buffer width of AA

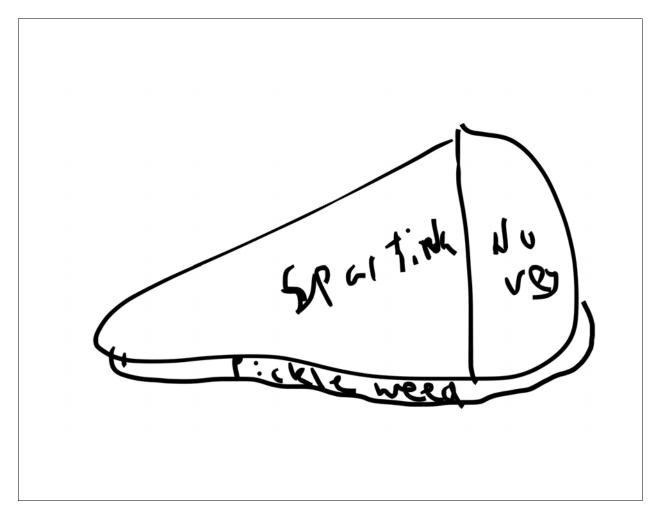
Structural Patch Type Worksheet	for Estarine Wetlands
---------------------------------	-----------------------

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m^3
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	X
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	6

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Spartina foliosa	
		Salicornia pacifica	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Spartina foliosa		Spartina foliosa	
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	2
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire lands		de	Construction
If yes, how severe is this disturbance?	likely to affect site for next 5 or more years site next 3-5		ext 3-5	likely to affect site next 1-2 vears		
	depression	al	verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine		1	ial non- stua r ine	X	vet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Table 21: Wetland dis	turbances and conversions.
-----------------------	----------------------------

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		
Actively managed hydrology		

Present	negative effect on AA

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Free cutting/sapling removal		
Removal of woody debris		
Freatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		X
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		·

	Basic Information Sheet Perennial Estuarine Wetlands				
Assessment Area Name: Central Basin 37					
Project	Name: San E	lijo Lagoon Rest	oration Project		
	nent Area ID	#: C-37			
Project	Site ID #:		Date: 10)/28/2021	
		lembers for this	s AA		
Alexand	ra Fowler, Jor	dan Luts (NC)			
	r of AA de: 33.008453	7389064	Longitu	de: -117.27189576264	42
Wetla	nd Sub-type: Pe	erennial Saline		Perennial Non-salir	ne
Re	AA Category: Restoration Mitigation Impacted Ambient Reference Training Other:				
			e over the course of sment be conducted	f the time spent in th during low tide. low tide	ne field?
Photo	Photographic Identification Numbers and Descrption:				
	Photo ID No.	Description	Latitude	Longitude	Datum
1	C37_S_1.jpg	Looking south	33.0084055556	-117.271880556	D_WGS_1984
2	C37_N_2.jpg	Looking north	33.0083638889	-117.271841667	D_WGS_1984

Site Location Description:

Comments:

AA Name: Central Basin 37					Date: 10/28/2021
Attribute 1: Buffer and Landscape Context (pp. 8-14)				Comments	
			Alpha.	Numeric	
Aquatic Area Abundance (D)			А	12	
Buffer (based on sub-metrics					
Buffer submetric A:	Alpha.	Numeric	-		
Percent of AA with Buffer	А	12			
Buffer submetric B: Average Buffer Width	А	12			
Buffer submetric C: Buffer Condition	А	12			
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		24	Final Attribute Score = $(Raw Score/24) \times 100$ 100
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)			
WI O			Alpha.	Numeric	
Water Source			С	6	
Hyroperiod			В	9	
Hydrologic Connectivity			В	9	
Raw Attribute Score = sum of numeric scor			scores	24	Final Attribute Score = (Raw Score/36) x 10067
Attribute 3: Physical Struct	ure Attri	<u>ibute (p</u>			
			Alpha.	Numeric	
Structural Patch Richness			В	9	
Topographic Complexity			С	6	
Raw Attribute Score = s	um of n	umeric s	scores	15	Final Attribute Score = (Raw Score/24) x 10063
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)		
Plant Community Composition	on (based Alpha.	d on sub- Numeric	metrics A	-C)	
Plant Community Submetric A: Number of plant layers	В	9			
Plant Community submetric B: Number of Co-dominant species	С	6			
Plant Community submetric C: Percent Invasion	А	12			
		unity Con uge of subme	*	9	
Horizontal Interspersion			В	9	
Vertical Biotic Structure			В	9	
Raw Attribute Score = s	um of n	umeric s	scores	27	Final Attribute Score = (Raw Score/36) x 100 75
Overall AA Score (avera	ge of for	ur final A	ttribute So	cores)	77
Overall AA Score (avera	ge of fot	ar final A	ttribute Sc	cores)	77

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment DirectionPercentage of Transect Length That is an Aquatic Feature					
North	100				
South	82				
East	100				
West	91				
Average Percentage of Transect Length that is an Aquatic Feature	93				

Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
Ε	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	250

Worksheet for calculating average buffer width of AA

Structural Patch	n Type	Worksheet	for Estarine	Wetlands
------------------	--------	-----------	--------------	----------

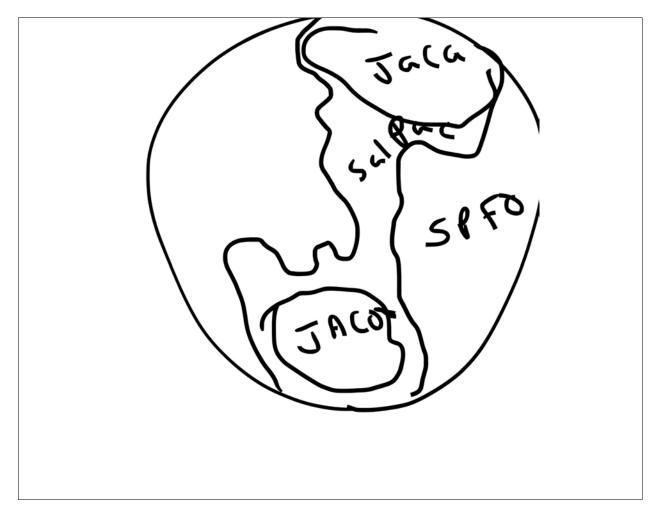
STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m ³
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	Х
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	Х
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	7

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

North to South		
East to West		
	- •	

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Jaumea carnosa	
	.		T
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Salicornia pacifica		Spartina foliosa	
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	3
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes	Yes No				
If yes, was it a flood, fire, landslide or other?	flood fi		fire	landslide		other
If yes, how severe is this disturbance?	likely to affe site for next ! more year	5 or	site n	o affect ext 3-5 ears		kely to affect site next 1-2 years
	depression	al	verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine	ine	1	ial non- stuarine	V	wet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Table 21: Wetland	disturbances	and	conversions.
-------------------	--------------	-----	--------------

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

Present	Significant negative effect on AA
	Present

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Mowing, grazing, excessive herbivory (within AA)			
Excessive human visitation			
Predation and habitat destruction by non-native vertebrates (e.g.,			
Tree cutting/sapling removal			
Removal of woody debris			
Treatment of non-native and nuisance plant species			
Pesticide application or vector control			
Biological resource extraction or stocking (fisheries, aquaculture)			
Excessive organic debris in matrix (for vernal pools)			
Lack of vegetation management to conserve natural resources			
Lack of treatment of invasive plants adjacent to AA or buffer			
Comments			

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)		
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic	Information	Sheet Perennial	Estuarine Wetlan	nds
		me: Central Bas			
		lijo Lagoon Rest	toration Project		
	ment Area ID	#: C-38			
Project	Site ID #:		Date: 10	0/28/2021	
Assessi	ment Team M	lembers for this	s AA		
Alonso	Gonzalez Cab	ello, Fabiola Lari	io (NC)		
	er of AA ade: 33.008357	3283226	Longitu	ide: -117.2689096840	07
Wetla	and Sub-type: Pe	rennial Saline	-	Perennial Non-salin	ne
0	ther:		e over the course o	ient Reference	Training
Note:	It is recommen	ned that the asse	sment be conducted	during low tide.	
		high tide		low tide	
Photo	Photo ID No.	_	bers and Descrptio	on: Longitude	Datum
1	CentralBasin38 _NE_1.jpg	Facing Northeast	33.0082972222	-117.269908333	D_WGS_1984
2	CentralBasin38 _W_2.jpg	Facing West	33.0083472222	-117.268919444	D_WGS_1984

Site Location Description:

Comments:

AA Name: Central Basin 38					Date: 10/28/2021
Attribute 1: Buffer and Lan	dscape	Context			Comments
			Alpha.	Numeric	
Aquatic Area Abundance (D)		А	12		
Buffer (based on sub-metrics					
Buffer submetric A:					
Percent of AA with Buffer	А	12			
Buffer submetric B: Average Buffer Width	А	12			
Buffer submetric C: Buffer Condition	А	12			
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		24	Final Attribute Score = (Raw Score/24) x 100
Attribute 2: Hydrology Attr	ribute (p	р. 1 <mark>5-19</mark>)			
			Alpha.	Numeric	
Water Source			С	6	
Hyroperiod			В	9	
Hydrologic Connectivity			В	9	
Raw Attribute Score = sum of numeric scores				24	Final Attribute Score = (Raw Score/36) x 10067
Attribute 3: Physical Struct	ure Attri	ibute (pj	p. 20-25)		
			Alpha.	Numeric	
Structural Patch Richness			С	6	
Topographic Complexity			С	6	
Raw Attribute Score = s	um of n	umeric s	scores	12	Final Attribute Score = $(Raw Score/24) \times 100$ 50
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)		
Plant Community Composition	on (based Alpha.	d on sub- Numeric	metrics A	-C)	
Plant Community Submetric A: Number of plant layers	В	9			
Plant Community submetric B: Number of Co-dominant species	С	6			
Plant Community submetric C: Percent Invasion	А	12			
		unity Con uge of subme	*	9	
Horizontal Interspersion			С	6	
Vertical Biotic Structure			В	9	
Raw Attribute Score = s	sum of n	umeric s	scores	24	Final Attribute Score = (Raw Score/36) x 100 67
Overall AA Score (avera	ge of for	ur final A	ttribute So	cores)	71

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind						
Segment Direction	Percentage of Transect Length That is an Aquatic Feature					
North	27					
South	79					
East	100					
West	100					
Average Percentage of Transect Length that is an Aquatic Feature	77					

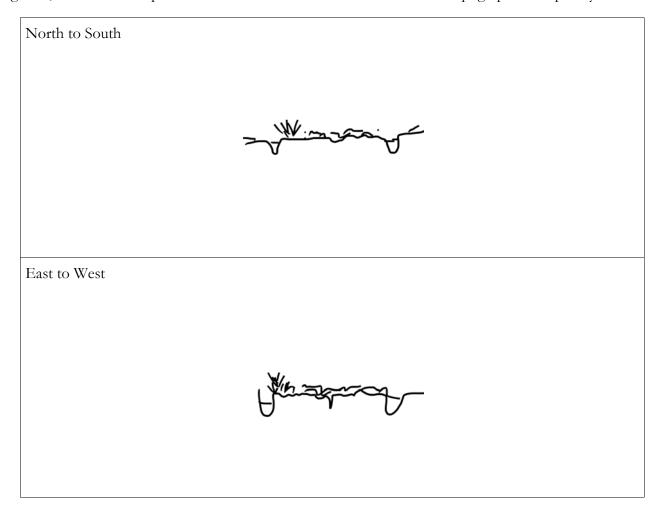
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

0 0						
Line	Buffer Width (m)					
Α	135					
В	132					
С	250					
D	250					
E	250					
F	250					
G	250					
Н	250					
Average Buffer Width *Round to the nearest integer*	221					


Worksheet for calculating average buffer width of AA

Structural Patch Type Worksheet for Estarine Wetlands	•
---	---

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m ³
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	X
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	
Pannes or pools on floodplain	
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	5

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)

Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Jaumea carnosa	
		Salicornia pacifica	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Spartina foliosa			
Salicornia pacifica			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	3
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landslie	le	other
If yes, how severe is this disturbance?	likely to affe site for next s more year	5 or	site n	o affect ext 3-5 ars		kely to affect site next 1-2 years
	depression	al	verna	l pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine	ine		ial non- stuarine	V	wet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Table 21: Wetland	l disturbances a	and conversions.
-------------------	------------------	------------------

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management		
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse	Х	
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Free cutting/sapling removal		
Removal of woody debris		
Freatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		X
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		·

	Basic Information Sheet Perennial Estuarine Wetlands							
Assess	Assessment Area Name: Central Basin 48							
Project	Project Name: San Elijo Lagoon Restoration Project							
	Assessment Area ID #: C-48							
Project	Site ID #:		Date: 10)/28/2021				
Assess	ment Team M	lembers for this	s AA					
Derrick	Derrick Mathews, Tito Marchant (NC)							
	r of AA ide: 33.007452	8438099	Longitu	de: -117.27173464864	4			
Wetla	nd Sub-type: Pe	erennial Saline		Perennial Non-salir	ne			
Ro	ategory: estoration I ther: Pre-restor	5	mpacted Amb	ient Reference	Training			
	What best describes the tidal stage over the course of the time spent in the field? Note: It is recommened that the assessment be conducted during low tide. high tide low tide							
Photo	graphic Iden	tification Num	bers and Descrptio	n:				
	Photo ID No.	Description	Latitude	Longitude	Datum			
1	CentralBasin48 _S_1.jpg		33.006925	-117.271691667	D_WGS_1984			
2	CentralBasin48 _S_2.jpg		33.0069222222	-117.271697222	D_WGS_1984			

Site Location Description:

Comments:

AA Name: Central basin 48					Date: 10/28/2021	
Attribute 1: Buffer and Lan	Comments					
	_		Alpha.	Numeric		
Aquatic Area Abundance (D)	Aquatic Area Abundance (D)			12		
Buffer (based on sub-metrics	/	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	А	12				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		24	Final Attribute Score = (Raw Score/24) x 100	100
Attribute 2: Hydrology Attr	ribute (p	р. <u>15-19</u>)				
	.		Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			В	9		
Hydrologic Connectivity			В	9		
Raw Attribute Score = sum of numeric so			scores	24	Final Attribute Score = (Raw Score/36) x 100	67
Attribute 3: Physical Struct	ure Attri	ibute (pr	o. 20-25)	1		
		11	Alpha.	Numeric		
Structural Patch Richness			А	12		
Topographic Complexity			А	12		
Raw Attribute Score = s	um of n	umeric s	scores	24	Final Attribute Score = (Raw Score/24) x 100	100
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)	•		
Plant Community Composition	on (based	<u>d on sub-</u>	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	А	12				
Plant Community submetric B: Number of Co-dominant species	В	9				
Plant Community submetric C: Percent Invasion	А	12				
		unity Con ge of subme	*	11		
Horizontal Interspersion			А	12		
Vertical Biotic Structure			А	12		
Raw Attribute Score = s	um of n	umeric s	scores	35	Final Attribute Score = (Raw Score/36) x 100	98
					(Itaw Score/ 50) x 100	

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	100				
South	50				
East	100				
West	68				
Average Percentage of Transect Length that is an Aquatic Feature	80				

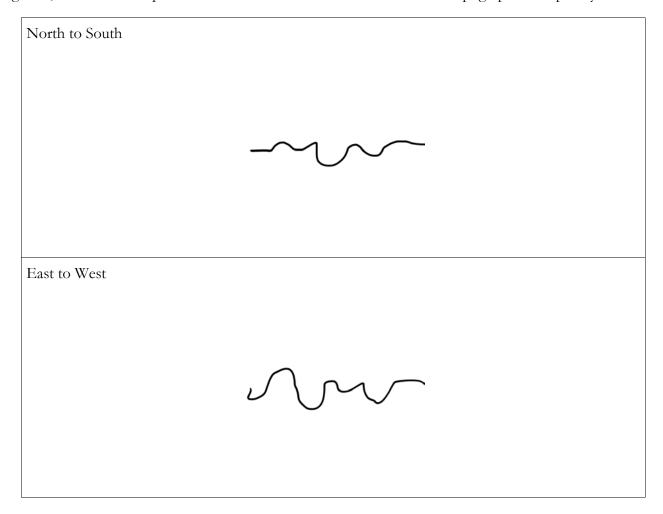
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100 %

Line	Buffer Width (m)
Line	Duner widen (iii)
Α	250
В	250
С	250
D	250
E	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	250


Worksheet for calculating average buffer width of AA

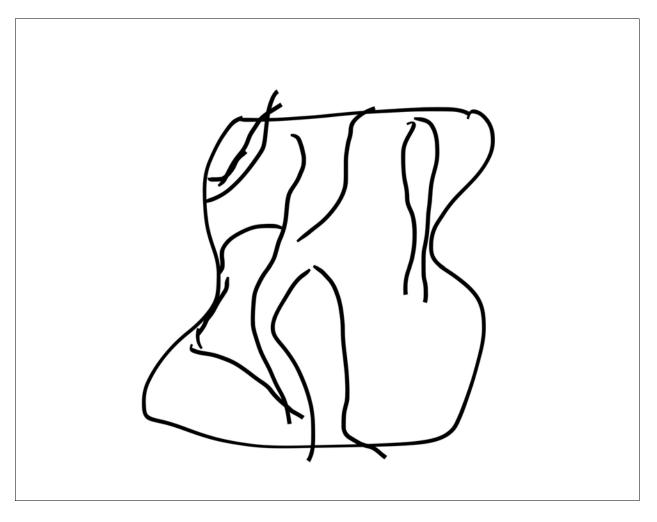
Structural Patch Type Worksheet for Estarine Wetlands	,
---	---

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	$3 \mathrm{m}^3$
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	X
Debris jams	
Filamentous macroalgae or algal mats	
Large Woody Debris	Χ
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	Χ
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	X
Secondary channels	Χ
Shellfish beds (living)	Χ
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	10

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Salicornia pacifica	
		Frankenia salina	
		Spartina foliosa	
		Jaumea carnosa	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Salicornia pacifica		Spartina foliosa	
Spartina foliosa			
Frankenia salina			
Very Tall (>1.5 m)	Invasive?		
Spartina foliosa		Total number of co-dominant species for all layers combined (enter here and use in Table 18)	4
		Percent Invastion *Round to the nearest whole number (integer)*	0

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes	No				
If yes, was it a flood, fire, landslide or other?	flood		fire	landsli	de	other
If yes, how severe is this disturbance?	likely to affe site for next more year	5 or	site n	o affect ext 3-5 ears		kely to affect site next 1-2 years
	depression	al	verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?				fined erine		seasonal estuarine
	perennial sal estuarine		-	ial non- stuarine	V	wet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Table 21: Wetland	l disturbances	and	conversions.
-------------------	----------------	-----	--------------

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)		
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

Present	negative effect on AA
Х	

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial	Х	
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor	Х	
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic Information Sheet Perennial Estuarine Wetlands					
Assess	Assessment Area Name: Central Basin 60					
Project Name: San Elijo Lagoon Restoration Project						
Assessment Area ID #: C-60						
Project	Site ID #:		Date: 10)/28/2021		
Assess	ment Team M	lembers for this	s AA			
Derrick	Mathews, Tito) Marchant (NC)				
	er of AA ide: 33.005290	580351	Longitu	u de: -117.27148534992	23	
Wetla	nd Sub-type: Pe	erennial Saline		Perennial Non-salir	ne	
R	ategory: estoration	5	mpacted Amb	ient Reference	Training	
			e over the course of sment be conducted	f the time spent in th during low tide. low tide	ne field?	
Photo	graphic Iden	tification Num	bers and Descrptio	n:		
	Photo ID No.	Description	Latitude	Longitude	Datum	
1	CentralBasin60 _N_1.jpg		33.0052194444	-117.271472222	D_WGS_1984	
2	CentralBasin60 _NE_2.jpg		33.0052611111	-117.271488889	D_WGS_1984	

Site Location Description:

Comments:

AA Name: Central Basin 60					Date: 10/28/2021
Attribute 1: Buffer and Lan	Comments				
			Alpha.	Numeric	
Aquatic Area Abundance (D))		В	9	
Buffer (based on sub-metrics A-C)					
Buffer submetric A:	Alpha.	Numeric	-		
Percent of AA with Buffer	А	12	-		
Buffer submetric B: Average Buffer Width	А	12			
Buffer submetric C: Buffer Condition	А	12			
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		21	Final Attribute Score = (Raw Score/24) x 100 88
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)			
			Alpha.	Numeric	
Water Source			С	6	
Hyroperiod			В	9	
Hydrologic Connectivity			В	9	
Raw Attribute Score = sum of numeric scores				24	Final Attribute Score = (Raw Score/36) x 10067
Attribute 3: Physical Struct	ure Attri	ibute (pj			
			Alpha.	Numeric	
Structural Patch Richness			В	9	
Topographic Complexity			А	12	
Raw Attribute Score = s	um of n	umeric s	scores	21	Final Attribute Score = (Raw Score/24) x 10088
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)		
Plant Community Composition	on (based Alpha.	d on sub- Numeric	metrics A	-C)	
Plant Community Submetric A: Number of plant layers	В	9			
Plant Community submetric B: Number of Co-dominant species	В	9			
Plant Community submetric C: Percent Invasion	А	12			
		unity Con ge of subme	nposition etrics A-C)	10	
Horizontal Interspersion			С	6	
Vertical Biotic Structure			В	9	
Raw Attribute Score = s	sum of n	umeric s	scores	25	Final Attribute Score = $(Raw Score/36) \times 100$ 70
Overall AA Score (avera	ge of fou	ır final A	ttribute So	cores)	79
					· · ·

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	100				
South	18				
East	44				
West	91				
Average Percentage of Transect Length that is an Aquatic Feature	63				

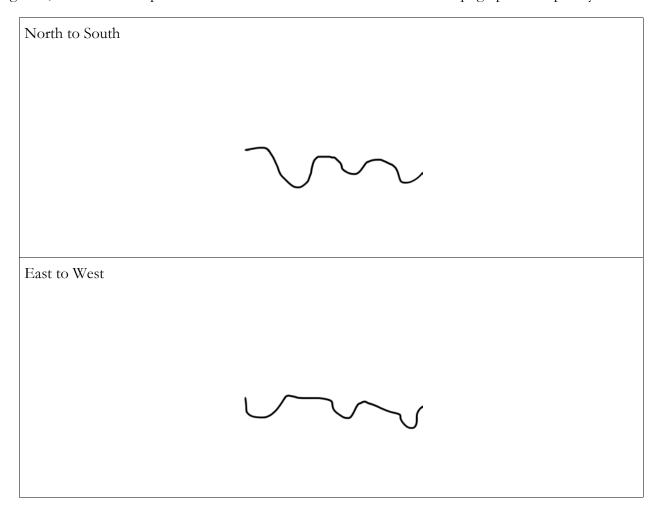
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

8 8	
Line	Buffer Width (m)
Α	250
В	250
С	250
D	191
E	147
F	118
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	213


Worksheet for calculating average buffer width of AA

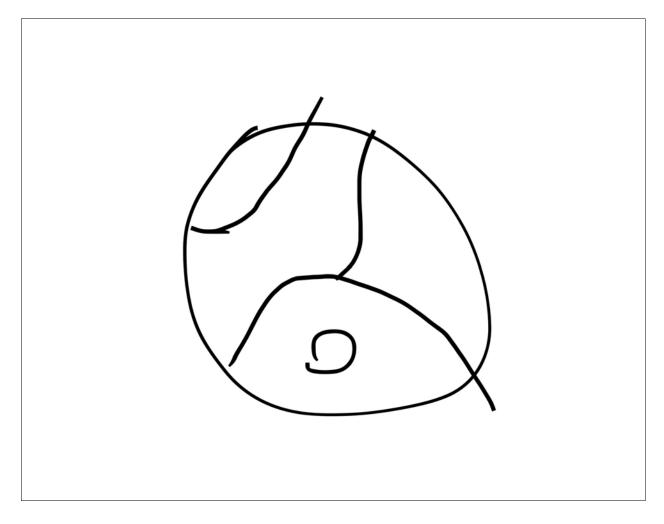
Structural Patch Type Worksheet for Estarine Wetlands	•
---	---

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	$3 \mathrm{m}^3$
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	Х
Debris jams	
Filamentous macroalgae or algal mats	
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	
Plant hummocks and/or sediment mounds	Χ
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	X
Shellfish beds (living)	Χ
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	6

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Salicornia pacifica	
		Frankenia salina	
		Jaumea carnosa	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Salicornia pacifica		Spartina foliosa	
Frankenia salina			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for all layers combined (enter here and use in Table 18)	4
		Percent Invastion *Round to the nearest whole number (integer)*	0

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes	No				
If yes, was it a flood, fire, landslide or other?	flood		fire	landsli	de	other
If yes, how severe is this disturbance?	likely to affect site for next 5 or more years		5 or site next 3-5			kely to affect site next 1-2 years
	depression	al	verna	l pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?				fined erine		seasonal estua ri ne
	perennial sal estuarine	ine	-	ial non- stuarine	N	vet meadow
	lacustrine		seep or	r spring		playa
	Other:					

Table 21: Wetland disturbances and conversions.

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)		
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

Present	Significant negative effect on AA	
Х		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Mowing, grazing, excessive herbivory (within AA)			
Excessive human visitation			
Predation and habitat destruction by non-native vertebrates (e.g.,			
Tree cutting/sapling removal			
Removal of woody debris			
Treatment of non-native and nuisance plant species			
Pesticide application or vector control			
Biological resource extraction or stocking (fisheries, aquaculture)			
Excessive organic debris in matrix (for vernal pools)			
Lack of vegetation management to conserve natural resources			
Lack of treatment of invasive plants adjacent to AA or buffer			
Comments		I	

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial	Х	
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor	Х	
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic Information Sheet Perennial Estuarine Wetlands						
Assessment Area Name: Central Basin 64							
Project Name: San Elijo Lagoon Restoration Project							
	Assessment Area ID #: C-64						
Project	Site ID #:		Date: 10	0/28/2021			
Assess	ment Team M	lembers for this	s AA				
Derrick	Mathews, Tito) Marchant (NC)					
	r of AA ide: 33.006037	57242	Longitu	ı de: -117.2658573888	91		
Wetla	nd Sub-type:	erennial Saline		Perennial Non-salin	ne		
Re	ategory: estoration ther: Pre-restor	2	mpacted Amb	ient Reference	Training		
			e over the course of sment be conducted	f the time spent in th during low tide. low tide	ne field?		
Photo	graphic Iden	tification Num	bers and Descrptio	on:			
	Photo ID No.	Description	Latitude	Longitude	Datum		
1	CentralBasin64 _W_1.jpg		33.0060111111	-117.265858333	D_WGS_1984		
2	CentralBasin64 _E_2.jpg		33.0060027778	-117.265827778	D_WGS_1984		

Site Location Description:

Comments:

AA Name: Central Basin 64					Date: 10/28/2021
Attribute 1: Buffer and Lan	Comments				
			Alpha.	Numeric	
Aquatic Area Abundance (D)		С	6		
Buffer (based on sub-metrics		1			
Buffer submetric A:	Alpha.	Numeric			
Percent of AA with Buffer	А	12			
Buffer submetric B: Average Buffer Width	А	12			
Buffer submetric C: Buffer Condition	А	12			
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		18	Final Attribute Score = $(Raw Score/24) \times 100$ 75
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)			
			Alpha.	Numeric	
Water Source			С	6	
Hyroperiod			В	9	
Hydrologic Connectivity			С	6	
Raw Attribute Score = sum of numeric s			scores	21	Final Attribute Score = (Raw Score/36) x 100 59
Attribute 3: Physical Struct	ure Attri	ibute (pj	p. 20-25)		
			Alpha.	Numeric	
Structural Patch Richness			В	9	
Topographic Complexity			В	9	
Raw Attribute Score = s	sum of n	umeric s	scores	18	Final Attribute Score = (Raw Score/24) x 10075
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)		
Plant Community Composition	on (based Alpha.	d on sub- Numeric	metrics A	-C)	
Plant Community Submetric A: Number of plant layers	В	9			
Plant Community submetric B: Number of Co-dominant species	В	9			
Plant Community submetric C: Percent Invasion	А	12			
		unity Con ge of subme		10	
Horizontal Interspersion		В	9		
Vertical Biotic Structure			В	9	
Raw Attribute Score = s	um of n	umeric s	scores	28	Final Attribute Score = (Raw Score/36) x 100 78
Overall AA Score (avera	ge of fou	ır final A	ttribute Sc	cores)	72
					- 10

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	76			
South	3			
East	3			
West	100			
Average Percentage of Transect Length that is an Aquatic Feature	46			

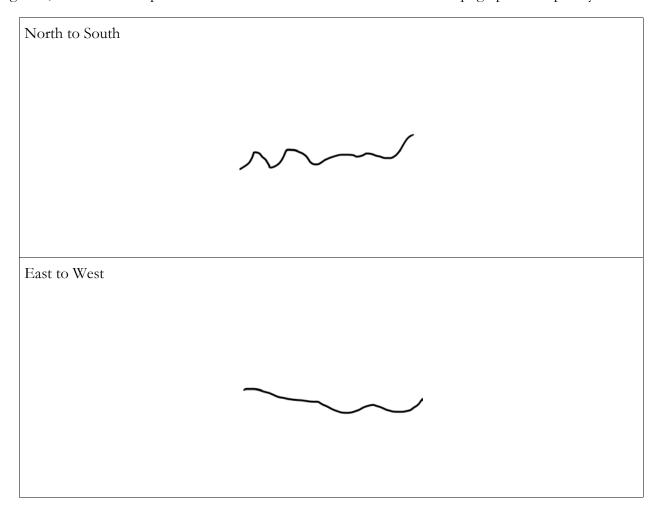
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
Ε	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	250


Worksheet for calculating average buffer width of AA

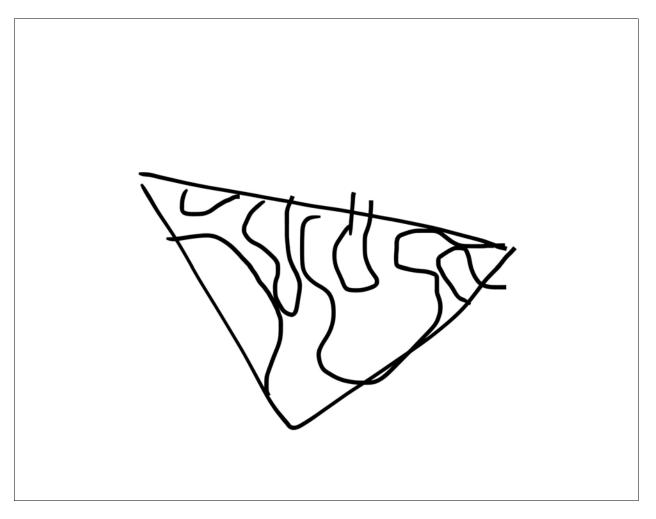
Structural Patch Type Worksheet for Estarine Wetlands	•
---	---

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m ³
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	Χ
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	7

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Distichlis spicata	
		Jaumea carnosa	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Salicornia pacifica		Spartina foliosa	
Spartina foliosa			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	4
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes	No		No		No		No		No		No		No		No		No		No		No		No		No		No		No		No		
If yes, was it a flood, fire, landslide or other?	flood	fire		fire landsli		other																												
If yes, how severe is this disturbance?	likely to affe site for next more year	5 or	site n	o affect ext 3-5 ears		kely to affect site next 1-2 years																												
	depression	al	verna	ıl pool		vernal pool system																												
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine																												
	perennial sal estuarine		1	ial non- stua r ine	V	vet meadow																												
	lacustrine		seep o	r spring		playa																												
	Other:																																	

Table 21: Wetland disturbances and conversions.

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)		
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management		
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Mowing, grazing, excessive herbivory (within AA)			
Excessive human visitation	Х		
Predation and habitat destruction by non-native vertebrates (e.g.,			
Tree cutting/sapling removal			
Removal of woody debris			
Treatment of non-native and nuisance plant species	Х		
Pesticide application or vector control			
Biological resource extraction or stocking (fisheries, aquaculture)			
Excessive organic debris in matrix (for vernal pools)			
Lack of vegetation management to conserve natural resources			
Lack of treatment of invasive plants adjacent to AA or buffer			
Comments		L.	

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial	Х	
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor	Х	
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic Information Sheet Perennial Estuarine Wetlands							
Assessment Area Name: Central Basin 72								
Project Name: San Elijo Lagoon Restoration Project								
Assessment Area ID #: C-72								
Project Site ID #: Date: 10/28/2021								
Assess	Assessment Team Members for this AA							
Alexand	Alexandra Fowler, Jordan Luts (NC)							
Cente	er of AA							
	ide: 33.006430	5091706	Longitu	do. 117 27/7/65217	2			
Lautu	ide: 55.000450)3081/90	Longitu	de: -117.2747465317	3			
Wetla	nd Sub-type:							
	Pe	erennial Saline		Perennial Non-salin	1e			
	1							
AA Ca	ategory:							
R	estoration	Mitigation I	mpacted Ambi	ient Reference	Training			
					Training			
Ot	ther:							
What	best describe	es the tidal stam	e over the course of	f the time spent in th	ne field?			
					ie neid.			
		Note: It is recommened that the assessment be conducted during low tide.						
high tide low tide								
		high tide	I	low tide				
		high tide		low tide				
Photo	ographic Iden		bers and Descrptio		.			
Photo	ographic Iden Photo ID	tification Num	-	n:				
Photo			bers and Descrptio Latitude		Datum			
Photo	Photo ID	tification Num	-	n:	Datum D_WGS_1984			
	Photo ID No. C72_E_1.jpg	tification Num	Latitude	n: Longitude	D_WGS_1984			
	Photo ID No.	tification Num	Latitude	n: Longitude				
1	Photo ID No. C72_E_1.jpg	tification Num	Latitude 33.0064305556	n: Longitude -117.274741667	D_WGS_1984			
1	Photo ID No. C72_E_1.jpg	tification Num	Latitude 33.0064305556	n: Longitude -117.274741667	D_WGS_1984			
1	Photo ID No. C72_E_1.jpg	tification Num	Latitude 33.0064305556	n: Longitude -117.274741667	D_WGS_1984			
1	Photo ID No. C72_E_1.jpg	tification Num	Latitude 33.0064305556	n: Longitude -117.274741667	D_WGS_1984			
1	Photo ID No. C72_E_1.jpg	tification Num	Latitude 33.0064305556	n: Longitude -117.274741667	D_WGS_1984			
1	Photo ID No. C72_E_1.jpg	tification Num	Latitude 33.0064305556	n: Longitude -117.274741667	D_WGS_1984			

Site Location Description:

Comments:

AA Name: Central Basin 72					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context	(pp. 8-14))	Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D)			В	9		
Buffer (based on sub-metrics	/	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	А	12				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score = D+	[C x (A	x B) ^{1/2}] ^{1/2}		21	Final Attribute Score = (Raw Score/24) x 100	88
Attribute 2: Hydrology Attr	ribute (p	p. 15-19))			
	-	-	Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			В	9		
Hydrologic Connectivity			С	6		
Raw Attribute Score = sum of numeric			scores	21	Final Attribute Score = (Raw Score/36) x 100	59
Attribute 3: Physical Struct	ure Attri	ibute (pr	o. 20-25)			
-			Alpha.	Numeric		
Structural Patch Richness			А	12		
Topographic Complexity			В	9		
Raw Attribute Score = s	sum of n	umeric s	scores	21	Final Attribute Score = (Raw Score/24) x 100	88
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	26-34)			
Plant Community Compositie				-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	С	6				
Plant Community submetric C: Percent Invasion	А	12				
		unity Con ge of subme	*	9		
Horizontal Interspersion		-	В	9		
Vertical Biotic Structure			С	6		
Raw Attribute Score = s	um of n	umeric s	scores	24	Final Attribute Score = (Raw Score/36) x 100	67
Overall AA Score (avera	ge of for	ır final A	ttribute So	cores)	76	

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	100			
South	12			
East	9			
West	100			
Average Percentage of Transect Length that is an Aquatic Feature	55			

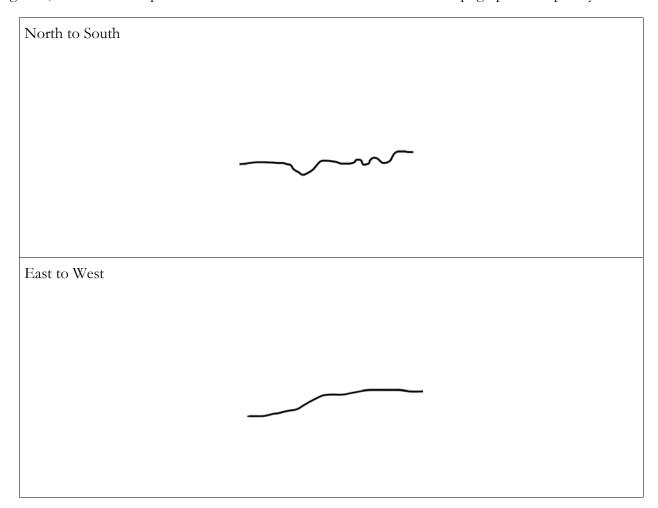
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

8 8			
Line	Buffer Width (m)		
Α	250		
В	250		
С	250		
D	250		
Ε	103		
F	220		
G	250		
Н	250		
Average Buffer Width *Round to the nearest integer*	228		


Worksheet for calculating average buffer width of AA

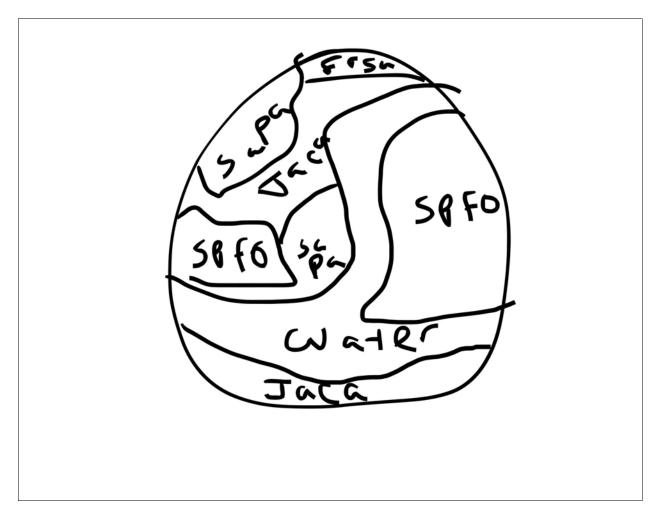
Structural Patch	n Type	Worksheet	for Estarine	Wetlands
------------------	--------	-----------	--------------	----------

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m ³
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	X
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	Χ
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	X
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	Χ
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	9

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Jaumea carnosa	
		Salicornia pacifica	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Salicornia pacifica		Spartina foliosa	
Spartina foliosa			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	3
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landslie	le	other
If yes, how severe is this disturbance?	likely to affe site for next 5 more years	5 or	site n	y to affect e next 3-5 years		kely to affect site next 1-2 years
	depression	al	verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal	ine	1	ial non- stuarine	V	vet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management		
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		Х
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic	Information	Sheet Perennial	Estuarine Wetlar	nds
		ame: Central Bas			
		<u>lijo Lagoon Rest</u>	oration Project		
	<u>ment Area ID</u> Site ID #:	#: C-73	Data: 1	0/28/2021	
,				0/28/2021	
		lembers for this	S AA		
Alexanc	ira Fowler, Jor	dan Luts (NC)			
	er of AA 1de: 33.003610)2142492	Longitu	ude: -117.2751396429	89
Wetla	and Sub-type:	erennial Saline		Perennial Non-salir	1e
				i cicinnai i von-sam	
R	ategory: estoration	Mitigation <mark>I</mark>	<mark>mpacted</mark> Amb	pient Reference	Training
		ned that the asses	e over the course of sment be conducted		ne field?
		high tide		low tide	
Photo		tification Numl	pers and Descrption	on:	
	Photo ID No.	Description	Latitude	Longitude	Datum
1	C73_E_1.jpg		33.0035416667	-117.275138889	D_WGS_1984
2	C73_W_2.jpg		33.0035527778	-117.274127778	D_WGS_1984

Site Location Description:

Comments:

AA Name: Central Basin 73					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context	(pp. 8-14)	Comments	
	-		Alpha.	Numeric		
Aquatic Area Abundance (D)	1		С	6		
Buffer (based on sub-metrics	,	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	С	6				
Buffer submetric C: Buffer Condition	С	6				
Raw Attribute Score = D+	x B) ^{1/2}] ^{1/2}		13	Final Attribute Score = (Raw Score/24) x 100	55	
Attribute 2: Hydrology Attr	ibute (p	p. 15-19)				
	<u> </u>		Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			В	9		
Hydrologic Connectivity			С	6		
Raw Attribute Score = sum of numeric s			scores	21	Final Attribute Score = (Raw Score/36) x 100	59
Attribute 3: Physical Structure Attribute (pp.			o. 20-25)			
-			Alpha.	Numeric		
Structural Patch Richness			А	12		
Topographic Complexity			В	9		
Raw Attribute Score = s	um of n	umeric s	scores	21	Final Attribute Score = (Raw Score/24) x 100	88
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	26-34)			
Plant Community Compositie		l on sub-	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	А	12				
Plant Community submetric C: Percent Invasion	А	12				
		unity Con ge of subme	*	11		
Horizontal Interspersion		-	В	9		
Vertical Biotic Structure			В	9		
Raw Attribute Score = s	um of n	umeric s	scores	29	Final Attribute Score = (Raw Score/36) x 100	81
Overall AA Score (average of four final Attri			ttribute So	cores)	71	

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	100			
South	15			
East	3			
West	82			
Average Percentage of Transect Length that is an Aquatic Feature	50			

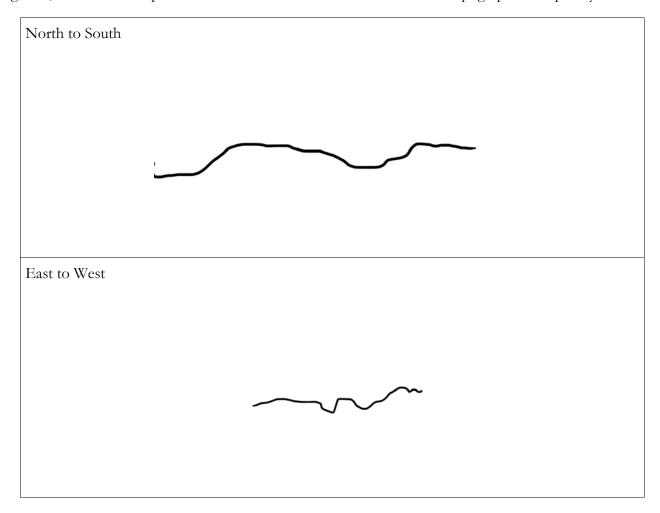
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)
Α	250
В	250
С	45
D	75
\mathbf{E}	220
F	30
G	30
Н	88
Average Buffer Width *Round to the nearest integer*	124


Worksheet for calculating average buffer width of AA

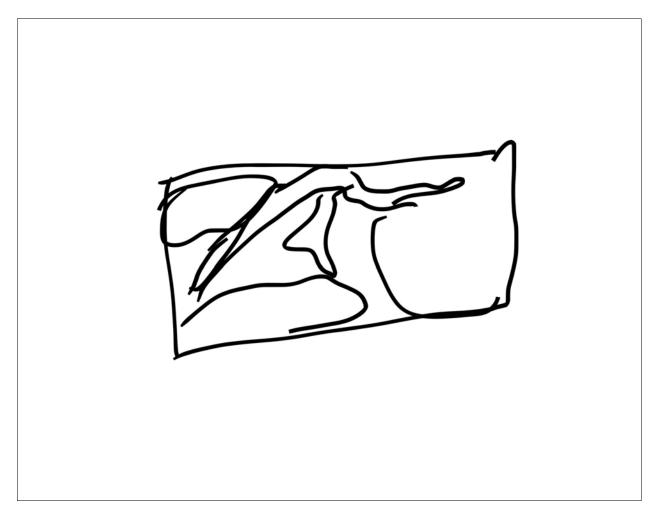
Structural Patch	n Type	Worksheet	for Estarine	Wetlands
------------------	--------	-----------	--------------	----------

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m ³
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	Х
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	Χ
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	X
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	9

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Frankenia salina	
		Distichlis spicata	
		Cuscuta sp.	
		Jaumea carnosa	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Frankenia salina		Spartina foliosa	
Salicornia pacifica			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for all layers combined (enter here and use in Table 18)	6
		Percent Invastion *Round to the nearest whole number (integer)*	0

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	ire landsli		other
If yes, how severe is this disturbance?	likely to affe site for next ! more year	5 or	site n	o affect ext 3-5 ars		kely to affect site next 1-2 years
	depression	al	verna	l pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine		-	ial non- stuarine	v	wet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management		
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Free cutting/sapling removal		
Removal of woody debris		
Freatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		Х
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic	Information	Sheet Perennial	Estuarine Wetlan	nds
		ame: East Basin			
		<u>Elijo Lagoon Rest</u>	oration Project		
	nent Area ID) #: E-2			
Project	Site ID #:		Date: 10	0/28/2021	
Assessm	nent Team N	Iembers for this	s AA		
Alonso	Gonzalez Cab	ello, Fabiola Lari	io (NC)		
Cente	r of AA				
Latitu	de: 33.008922	2500534	Longitu	ide: -117.2602883378	01
Latitu	ue. 33.008922	2309334	Longitu	iue. -117.2002003370	21
Wetla	nd Sub-type:				
	Р	erennial Saline		Perennial Non-salin	ne
AA Ca	ategory:				
Re	estoration	Mitigation I	mpacted Amb	ient Reference	Training
		0	1		0
Ot	her:				
What	best describe	es the tidal stage	e over the course of	f the time spent in th	ne field?
Note:	It is recomme	ned that the asses	sment be conducted	during low tide.	
		high tide		low tide	
		ingii tiuc			_
Photo	graphic Iden	tification Num	bers and Descrptio	n:	
	Photo ID	Description	Latitude	Longitude	Datum
	No.	-			
1	EastBasin02 _NW_1.jpg	Facing Northwest	33.0089444444	-117.260230556	D_WGS_1984
2	EastBasin02	Facing East	33.0087027778	-117.261216667	D_WGS_1984
2	_E_2.jpg	0	55.0007027770	-117.201210007	2_000_000
	1	1I		1	JJ

Site Location Description:

Comments:

AA Name: East Basin 02					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context			Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D))		В	9		
Buffer (based on sub-metrics	A-C)					
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	А	12				
Buffer submetric C: Buffer Condition	В	9				
Raw Attribute Score = D+	-[C x (A	x B) ^{1/2}] ^{1/2}		19	Final Attribute Score = (Raw Score/24) x 100	80
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)				
W 0			Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			С	6		
Hydrologic Connectivity			С	6		
Raw Attribute Score = s	sum of n	umeric s	scores	18	Final Attribute Score = (Raw Score/36) x 100	50
Attribute 3: Physical Struct	ture Attri	ibute (pj				
			Alpha.	Numeric		
Structural Patch Richness			В	9		
Topographic Complexity			С	6		
Raw Attribute Score = s	sum of n	umeric s	scores	15	Final Attribute Score = (Raw Score/24) x 100	63
Attribute 4: Biotic Structur						
Plant Community Compositi	on (based Alpha.	d on sub- Numeric	metrics A	-C)		
Plant Community Submetric A: Number of plant layers	С	6				
Plant Community submetric B: Number of Co-dominant species	D	3				
Plant Community submetric C: Percent Invasion	А	12				
	nt Comm meric avera	•	*	7		
Horizontal Interspersion			D	3		
Vertical Biotic Structure			А	12		
Raw Attribute Score = s	sum of n	umeric s	scores	22	Final Attribute Score = (Raw Score/36) x 100	62
Overall AA Score (avera	ige of for	ır final A	ttribute So	cores)	64	
					-	

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	59			
South	6			
East	100			
West	62			
Average Percentage of Transect Length that is an Aquatic Feature	57			

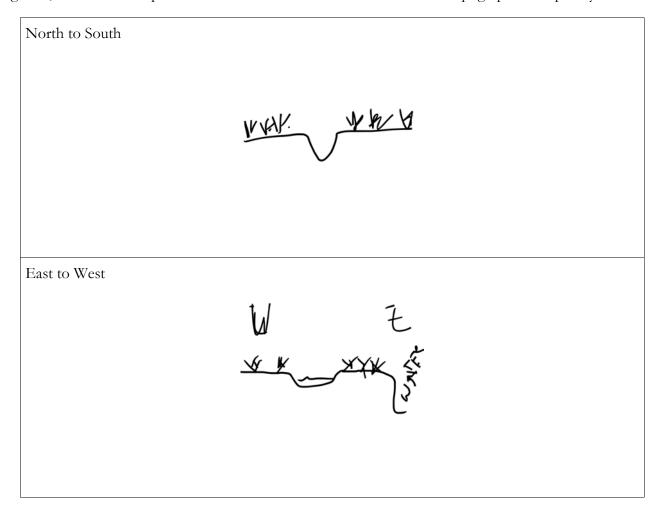
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

8 8	
Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
E	132
F	74
G	118
Н	235
Average Buffer Width *Round to the nearest integer*	195


Worksheet for calculating average buffer width of AA

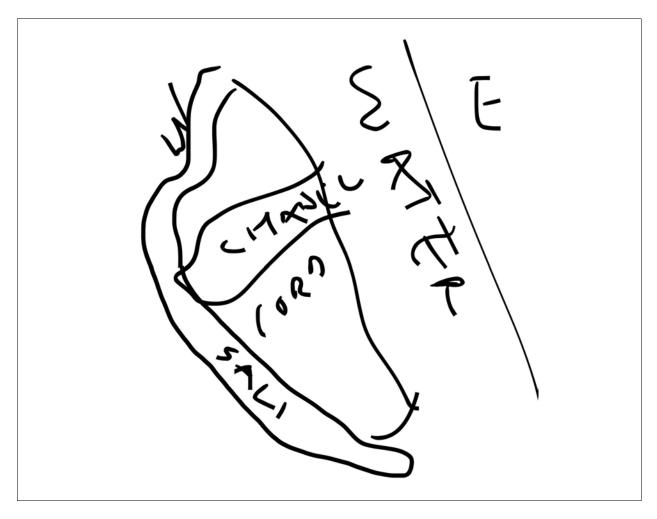
Structural Patch	n Type	Worksheet	for Estarine	Wetlands
------------------	--------	-----------	--------------	----------

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m^3
Abundant wrackline or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	X
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	
Pannes or pools on floodplain	Χ
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	Χ
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	6

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)


Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
	T		T · >
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Salicornia pacifica			
Spartina foliosa			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	2
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landslie	le	other
If yes, how severe is this disturbance?	likely to affe site for next ! more year	5 or	site n	o affect ext 3-5 ears		kely to affect site next 1-2 years
	depression	al	verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine	ed		fined erine		seasonal estuarine
	perennial sal estuarine	ine	1	ial non- stuarine	V	vet meadow
	lacustrine		seep o	r spring		playa
	Other: Season:	al salt	t marsh			

Table 21: Wetland disturbances and conversions.

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel	Х	
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

Present	Significant negative effect on AA
	Present

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Free cutting/sapling removal		
Removal of woody debris		
Freatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		Х
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

	Basic	Information	Sheet Perennial	Estuarine Wetlar	nds
Assessm	nent Area	Name: East Basi	n 36		
Project	Name: San E	<u>Elijo Lagoon Rest</u>	oration Project		
	nent Area ID) #: E-36			
Project	Site ID #:		Date: 1	0/28/2021	
Assessr	nent Team M	Aembers for this	s AA		
Alonso	Gonzalez Cab	oello, Fabiola Lar	io (NC)		
	r of AA de: 33.014732	23750411	Longitu	ade: -117.2602707281	62
Wetla	nd Sub-type:	erennial Saline		Perennial Non-salir	ne
Ot What	her: best describe	es the tidal stag	mpacted Amb	f the time spent in th	Training
Photo	graphic Iden	tification Num	bers and Descrptio	on:	
	Photo ID No.	Description	Latitude	Longitude	Datum
1	EastBasin36 _E_1.jpg	Facing East	33.0133333333	-117.259677778	D_WGS_1984
2	EastBasin36 _W_2.jpg	Facing West	33.015675	-117.256294444	D_WGS_1984

Site Location Description:

Comments:

AA Name: East Basin 36					Date: 10/28/2021	
Attribute 1: Buffer and Lan	dscape	Context			Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D))		В	9		
Buffer (based on sub-metrics	A-C)	1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	В	9				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score = D+	-[C x (A	x B) ^{1/2}] ^{1/2}		20	Final Attribute Score = (Raw Score/24) x 100	84
Attribute 2: Hydrology Attr	ribute (p	p. 15-19)				
			Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			С	6		
Hydrologic Connectivity			С	6		
Raw Attribute Score = sum of numeric sc			scores	18	Final Attribute Score = (Raw Score/36) x 100	50
Attribute 3: Physical Structure Attribute (pp. 20-25)						
			Alpha.	Numeric		
Structural Patch Richness			С	6		
Topographic Complexity			В	9		
Raw Attribute Score = s	sum of n	umeric s	scores	15	Final Attribute Score = (Raw Score/24) x 100	63
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	26-34)			
Plant Community Compositi		d on sub-	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	В	9				
Plant Community submetric C: Percent Invasion	А	12				
	nt Comm meric avera	•	*	10		
Horizontal Interspersion		-	С	6		
Vertical Biotic Structure			А	12		
Raw Attribute Score = s	sum of n	umeric s	scores	28	Final Attribute Score = (Raw Score/36) x 100	78
Overall AA Score (avera	ge of for	ır final A	ttribute So	cores)	69	

Scoring Sheet: Perennial Estuarine Wetlands

Percentage of Transect Lines that Contains an Aquatic Feature of Any Kind					
Segment DirectionPercentage of Transect LengtThat is an Aquatic Feature					
North	3				
South	100				
East	100				
West	3				
Average Percentage of Transect Length that is an Aquatic Feature	52				

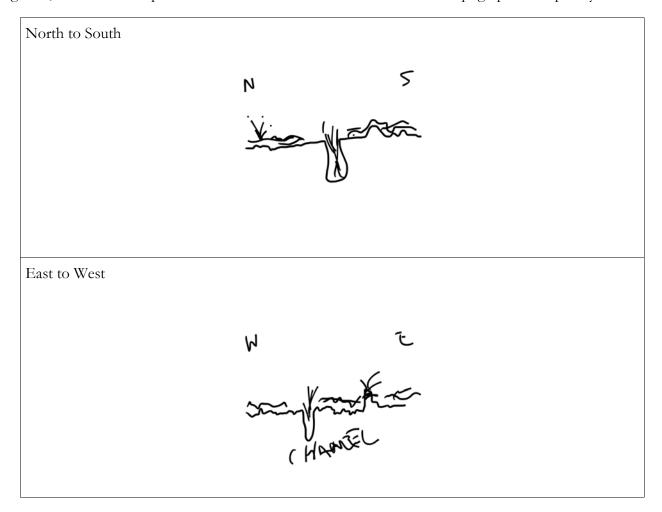
Worksheet for Aquatic Area Abundance Metric for Estuarine Wetlands

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerialimagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100%

Line	Buffer Width (m)		
Α	15		
В	250		
С	250		
D	250		
E	250		
F	250		
G	15		
Н	15		
Average Buffer Width *Round to the nearest integer*	162		


Worksheet for calculating average buffer width of AA

Structural Patch Type Worksheet for Estarine Wetlands	•
---	---

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	$3 \mathrm{m}^3$
Abundant wrackline or organic debris in channel, on floodplain, or across depressional	X
wetland plain	
Animal mounds and burrows	
Bank slumps or undercut banks in channels or along shoreline	
Debris jams	
Filamentous macroalgae or algal mats	Χ
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Pannes or pools on floodplain	X
Plant hummocks and/or sediment mounds	
Point bars and in-channel bars	
Pools or depressions in channels (wet or dry channels)	
Secondary channels	X
Shellfish beds (living)	
Soil cracks	
Standing snags (at least 3 m tall)	
Submerged vegetation	
Total Possible	16
No. Observed Patch Types (enter here and use in Table 14 below)	5

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major channels, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 8, choose a description in Table 16 that best describes the overall topographic complexity of the AA.

Plant Community Metric Worksheet: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)

Special Note:

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Jaumea carnosa	
		Salicornia pacifica	
		Distichlis spicata	
		Frankenia salina	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Salicornia pacifica			
Frankenia salina			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	4
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a quick sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign the zones names and record them on the right. Each zone should comprise as least 5% of the AA. Based on the sketch, choose a single profile from Figure 10 that best represents the AA overall.

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landslie	le	other
If yes, how severe is this disturbance?	likely to affe site for next ! more year	5 or	likely to affect site next 3-5 years		likely to affect site next 1-2 years	
	depression	al	verna	ıl pool		vernal pool system
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confine riverine					seasonal estuarine
	perennial sal estuarine	ine	1	ial non- stuarine	V	wet meadow
	lacustrine		seep o	r spring		playa
	Other:					

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		
Actively managed hydrology		

Present	negative effect on AA

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Free cutting/sapling removal		
Removal of woody debris		
Freatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		X
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		X
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

Basic Information Sheet: Depressional Wetlands

Assessment Area Name: East Basin 33						
Project Name: San Elijo Lagoon Restoration Project						
Assessment Area ID # Project Site ID #:	7: E-33	Date: 2021-10-28				
Assessment Team Me	unale and fam their AA	Date: 2021-10-20				
Alexandra Fowler, Jord	an Luis (NC)					
AA Category:						
□ Pre-Restoration	✓ Post-Restoration	□ Pre-Mitigation	Dest-Mitigation			
Pre-Impact	□ Post-Impact	□ Training	□ Ambient			
□ Reference	□ Other					
Orgin of Wetland (if	known):					
✓ Natural system	□ Artificial system					
Type of Management (if known): □ waterfowl/birds □ amphibians □ general wildlife □ sediment □ water quality □ stormwater □ water supply (agriculture) □ water supply (livestock) ☑ not managed □ other Which best describes the type of depressional wetland?						
 ☐ freshwater marsh ☑ other (specify): ☑ other (specify): 						
AA Encompasses:						
entire wetlas	nd 🗹 portio	on of the wetland				
Which best describes the hydrologic state of the wetland at the time of assessment? ponded/innundated saturated soil, but no surface water						
What is the apparent hydrologic regime of the wetland?						
<i>Perennially flooded</i> systems contain surface water year-round, <i>seasonally flooded</i> depressional wetlands are defined as supporting surface water for 4-11 months of the year (in > 5 out of 10 years.) <i>Temporarily flooded</i> depressional wetlands possess surface water between 2 weeks and 4 months of the year.						
perennially flooded	seasonally f	flooded 🔽 to	emporarily flooded			

Does your wetland connect with the floodplain of a nearby stream?yesno(system subject to overbank flow, a dammed stream does not count)					
Does the wetland have a defined on undefined outlet? defined undefined					
Does the wetland have a defined on undefined inlet? defined undefined					
Are the inlet and outlet at the same location? \Box yes \checkmark no					
Is the topographic basin of the wetland distinct or indistinct ?					

An *indistinct* topographic basin is one that lacks obvious boundaries between wetland and upland. Examples of such features are seasonal, depressional wetlands in very low-gradient landscapes.

Photo Identification Numbers and Description:

Photos should be taken from edge of AA looking toward the centroid of AA

	Photo ID No.	Description	Latitude	Longitude	Datum
1	E33_S_1.jpg		33.0151	-117.253697222	D_WGS_1984
2	E33_SW_2.jpg		33.0151194444	-117.253477778	D_WGS_1984

Site Location Description:

Comments:

AA Name: East Basin 33					Date: 2021-10-28	
Attribute 1: Buffer and Lan	dscape	Context			Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D))		А	12		
Buffer (based on sub-metrics		1				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	А	12				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score =	= D+[C	C x (A x B	$3)^{1/2}]^{1/2}$	24	Final Attribute Score = (Raw Score/24) x 100	100
Attribute 2: Hydrology Attr	ribute (p	p. 16-21)		•		
	_		Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			А	12		
Hydrologic Connectivity			В	9		
Raw Attribute Score = s	sum of n	umeric s	scores	27	Final Attribute Score = (Raw Score/36) x 100	75
Attribute 3: Physical Struct	ure Attr	ibute (pj	o. 22-28)			
-			Alpha.	Numeric		
Structural Patch Richness			С	6		
Topographic Complexity			С	6		
Raw Attribute Score = sum of numeric s		scores	12	Final Attribute Score = (Raw Score/24) x 100	50	
Attribute 4: Biotic Structure	e Attribu	ite (pp. 2	29-39)			
Plant Community Compositie	on (based	d on sub-	metrics A	-C)		
	Alpha.	Numeric				
Plant Community Submetric A: Number of plant layers	А	12				
Plant Community submetric B: Number of Co-dominant species	С	6				
Plant Community submetric C: Percent Invasion	В	9				
Plant Com (nu.	•	Composition		9		
Horizontal Interspersion		_ •	С	6		
110112011tai Interspersion			А	12		
Vertical Biotic Structure			11			
1	sum of n	umeric s		27	Final Attribute Score = (Raw Score/36) x 100	75

Scoring Sheet: Depressional Wetlands

Percentage of Transect Lines that Contains Aquatic Area of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	50				
South	74				
East	53				
West	71				
Average Percentage of Transect Length that is an Aquatic Feature	62				

Worksheet for Aquatic Area Abundance Metric (Method 1)

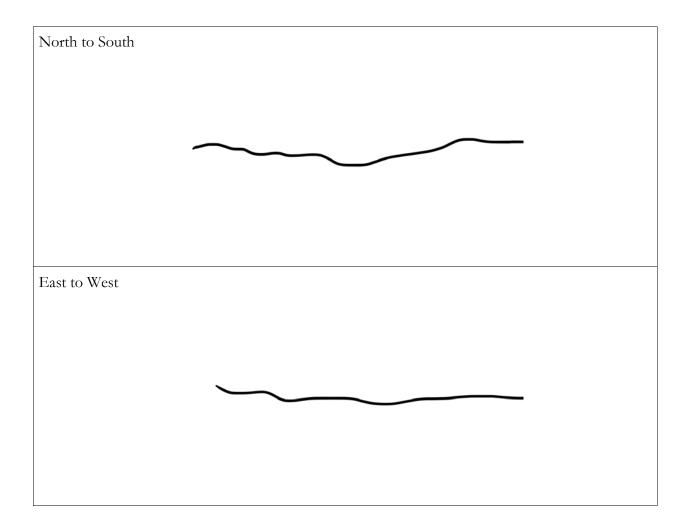
Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerial imagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100 %

Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
E	250
F	250
G	250
Н	220
Average Buffer Width *Round to the nearest integer*	246

Worksheet for calculating average buffer width of AA

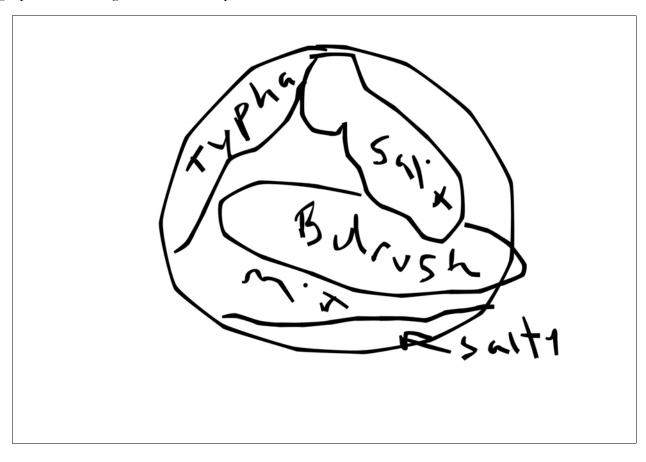

Structural Patch Type Worksheet for Depressional Wetlands

Check each type of patch that is observed in the AA and use the total number of observed patches in Table 15.

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	$3 \mathrm{m}^3$
Abundant wrackl or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	
Cobbles and Boulders	
Concentric or parallel high water marks	
Filamentous macroalgae or algal mats	
Islands (mostly above high-water)	
Large Woody Debris	Χ
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	
Open water	
Plant hummocks and/or sediment mounds	Χ
Soil cracks	
Standing snag(s) (1 or more at least 3 m tall)	Χ
Submerged vegetation	
Swales on floodplain or along shoreline	Χ
Variegated, convoluted, or crenulated foreshore	
Woody vegetation in water	
Total Possible	17
No. Observed Patch Types (enter here and use in Table 15 below)	5

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major topographic features, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 7, choose a description in Table 17 that best describes the overall topographic complexity of the AA.


Plant Community Metric Worksheet 2 of 8: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Frankenia salina	
	T · >		T · >
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Chenopodium sp.	Х	Pluchea odorata var. odorata	
Frankenia salina		Schoenoplectus californicus	
Pluchea odorata var. odorata		Typha domingensis	
Very Tall (>1.5 m)	Invasive?		
Salix lasiolepis		Total number of co-dominant species for	
		all layers combined	6
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	17
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign names to the zones and record them on the right. Based on the sketch, choose a single profile from Figure 8 that best represents the AA overall.

Wetland disturbances and conversions Worksheet

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood	lood fire		landsli	de	other
If yes, how severe is this disturbance?	likely to affect site next 5 or more years		likely to affect site next 3-5 years			tely to affect ite next 1-2 years
	depression	nal	verna	l pool	۲	vernal pool
Has this wetland been converted from another type? If yes, then what was the	non-confined		con	fined		seasonal
previous type?	1		1	ial non- stuarine	W	vet meadow
	lacustrine	5	seep or	r spring		playa

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management		
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments	- .	

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		X
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		Х
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

Basic Information Sheet: Depressional Wetlands

Assessment Area Nar	Assessment Area Name: East Basin 34					
,	jo Lagoon Restoration Pr	roject				
Assessment Area ID #	#: E-34	Deter 2021 10 20				
Project Site ID #: Date: 2021-10-28						
Assessment Team Me						
Alexandra Fowler, Jord	an Luts (NC)					
AA Category:						
□ Pre-Restoration	✓ Post-Restoration	□ Pre-Mitigation	Dest-Mitigation			
Pre-Impact	□ Post-Impact	□ Training	□ Ambient			
□ Reference	□ Other					
Orgin of Wetland (if	known):					
✓ Natural system	□ Artificial system					
Type of Management (if known): □ waterfowl/birds □ amphibians □ general wildlife □ sediment □ water quality □ stormwater □ water supply (agriculture) □ water supply (livestock) ☑ not managed □ other Which best describes the type of depressional wetland?						
freshwater marshother (specify):	n 🗹 alkaline marsh	□ brackish marsł	1			
AA Encompasses:						
🗌 entire wetla	nd 🔽 portio	on of the wetland				
Which best describes the hydrologic state of the wetland at the time of assessment? ✓ ponded/innundated □ saturated soil, but no surface water □ dry						
What is the apparen	t hydrologic regime of t	the wetland?				
are defined as support	ing surface water for 4-1	1 months of the year (in	oded depressional wetlands n > 5 out of 10 years.) 2 weeks and 4 months of			
perennially flooded	seasonally f	flooded 🔽 t	emporarily flooded			

Does your wetland connect with the floodplain of a nearby stream? yes no (system subject to overbank flow, a dammed stream does not count)				
Does the wetland have a defined on undefined outlet? defined undefined				
Does the wetland have a defined on undefined inlet? defined undefined				
Are the inlet and outlet at the same location? \Box yes \checkmark no				
Is the topographic basin of the wetland distinct or indistinct ?				

An *indistinct* topographic basin is one that lacks obvious boundaries between wetland and upland. Examples of such features are seasonal, depressional wetlands in very low-gradient landscapes.

Photo Identification Numbers and Description:

Photos should be taken from edge of AA looking toward the centroid of AA

	Photo ID No.	Description	Latitude	Longitude	Datum
1	E34_E_1.jpg		33.0143138889	-117.253588889	D_WGS_1984
2	E34_W_2.jpg		33.0148333333	-117.251902778	D_WGS_1984

Site Location Description:

Comments:

AA Name: East Basin 34					Date: 2021-10-28	
Attribute 1: Buffer and Landscape Context (pp. 8-15)					Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D)	Aquatic Area Abundance (D)		А	12		
Buffer (based on sub-metrics A-C)						
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12				
Buffer submetric B: Average Buffer Width	А	12				
Buffer submetric C: Buffer Condition	А	12				
Raw Attribute Score =	= D+[C	C x (A x E	$3)^{1/2}]^{1/2}$	24	Final Attribute Score = (Raw Score/24) x 100	100
Attribute 2: Hydrology Attr	ribute (p	p. 16-21)		r T		
			Alpha.	Numeric		
Water Source			С	6		
Hyroperiod			А	12		
Hydrologic Connectivity			В	9		
Raw Attribute Score = sum of numeric scores27			27	Final Attribute Score = (Raw Score/36) x 100	75	
Attribute 3: Physical Structure Attribute (pp. 22-28)						
Structural Patch Richness			Alpha. D	Numeric 3		
Topographic Complexity			С	6		
Raw Attribute Score = s	sum of n	umeric s	scores	9	Final Attribute Score = (Raw Score/24) x 100	38
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	29-39)			
Plant Community Composition	on (based Alpha.	d on sub- Numeric	metrics A	-C)		
Plant Community Submetric A: Number of plant layers	В	9				
Plant Community submetric B: Number of Co-dominant species	С	6				
Plant Community submetric C:	D	3				
Percent Invasion						
Percent Invasion Plant Com	nmunity C meric avera	*		6		
Percent Invasion Plant Com (nu.	•	*		6		
Percent Invasion Plant Com (nu.	•	*	etrics A-C)	_		
Percent Invasion Plant Com (nu Horizontal Interspersion	meric avera	ge of subme	etrics A-C) C A	6	Final Attribute Score = (Raw Score/36) x 100	67

Scoring Sheet: Depressional Wetlands

Percentage of Transect Lines that Contains Aquatic Area of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	79			
South	68			
East	74			
West	100			
Average Percentage of Transect Length that is an Aquatic Feature	80			

Worksheet for Aquatic Area Abundance Metric (Method 1)

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerial imagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100 %

Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
E	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	250

Worksheet for calculating average buffer width of AA

Structural Patch Type Worksheet for Depressional Wetlands

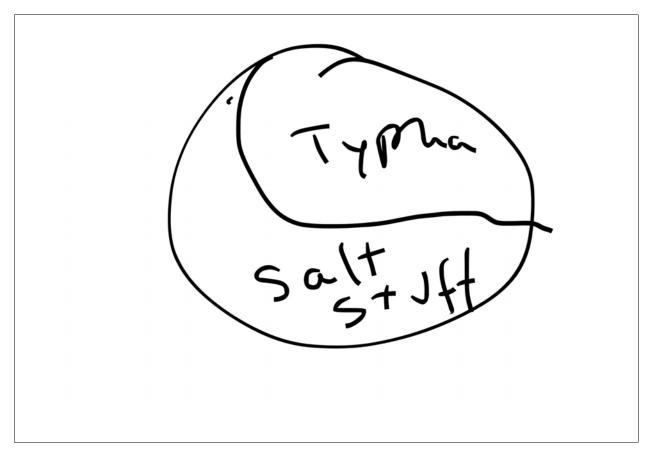
Check each type of patch that is observed in the AA and use the total number of observed patches in Table 15.

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	$3 \mathrm{m}^3$
Abundant wrackl or organic debris in channel, on floodplain, or across depressional wetland plain	
Animal mounds and burrows	
Bank slumps or undercut banks in channels or along shoreline	
Cobbles and Boulders	
Concentric or parallel high water marks	
Filamentous macroalgae or algal mats	
Islands (mostly above high-water)	
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	
Open water	Χ
Plant hummocks and/or sediment mounds	
Soil cracks	
Standing snag(s) (1 or more at least 3 m tall)	
Submerged vegetation	
Swales on floodplain or along shoreline	Χ
Variegated, convoluted, or crenulated foreshore	
Woody vegetation in water	
Total Possible	17
No. Observed Patch Types (enter here and use in Table 15 below)	2

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major topographic features, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 7, choose a description in Table 17 that best describes the overall topographic complexity of the AA.

North to South	
East to West	


Plant Community Metric Worksheet 2 of 8: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Frankenia salina	
		Salicornia pacifica	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Apium graveolens	Х	Schoenoplectus californicus	
Atriplex sp.	X	Typha domingensis	
Frankenia salina			
Very Tall (>1.5 m)	Invasive?		
		Total number of co-dominant species for	
		all layers combined	6
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	33
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign names to the zones and record them on the right. Based on the sketch, choose a single profile from Figure 8 that best represents the AA overall.

Wetland disturbances and conversions Worksheet

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landsli	de	other
If yes, how severe is this disturbance?	likely to affect site next 5 or more years likely to affect site next 3-5 years			tely to affect ite next 1-2 years		
	depressional ver		verna	l pool	۲	vernal pool
Has this wetland been converted from another type? If yes, then what was the	non-confined confined		fined		seasonal	
previous type?	perennial sa estuarine		1	ial non- stuarine	W	vet meadow
	lacustrine	5	seep or	r spring		playa

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Point Source (PS) discharges (POTW, other non-stormwater discharge)			
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х		
Flow diversions or unnatural inflows			
Dams (reservoirs, detention basins, recharge basins)			
Flow obstructions (culverts, paved stream crossings)			
Weir/drop structure, tide gates			
Dredged inlet/channel			
Engineered channel (riprap, armored channel bank, bed)			
Dike/levees			
Groundwater extraction			
Ditches (borrow, agricultural drainage, mosquito control, etc.)			
Actively managed hydrology			
Comments			

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management		
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Mowing, grazing, excessive herbivory (within AA)			
Excessive human visitation			
Predation and habitat destruction by non-native vertebrates (e.g.,			
Tree cutting/sapling removal			
Removal of woody debris			
Treatment of non-native and nuisance plant species			
Pesticide application or vector control			
Biological resource extraction or stocking (fisheries, aquaculture)			
Excessive organic debris in matrix (for vernal pools)			
Lack of vegetation management to conserve natural resources			
Lack of treatment of invasive plants adjacent to AA or buffer			
Comments			

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential		X
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)		
Transportation corridor		
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)		
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

Basic Information Sheet: Depressional Wetlands

Assessment Area Name: East Basin 63						
,	jo Lagoon Restoration Pr	roject				
Assessment Area ID 7	#: E-63	Date: 2021-10-28				
Project Site ID #:	1 0 1 4 4	Date: 2021-10-20				
Assessment Team Me						
Derrick Mathews, Tito	Marchant (NC)					
AA Category:						
Pre-Restoration	✓ Post-Restoration	□ Pre-Mitigation	Dest-Mitigation			
Pre-Impact	Dest-Impact	□ Training	□ Ambient			
□ Reference	□ Other					
Orgin of Wetland (if	known):					
✓ Natural system	□ Artificial system					
water supply (agrice	· · · · ·	ivestock) 🗹 not manage	vater quality □ stormwater ed □ other			
freshwater marslother (specify):		□ brackish marsh	1			
AA Encompasses:						
🗌 entire wetla	nd 🔽 portio	on of the wetland				
Which best describe	the hydrologic state of a saturated soil,	of the wetland at the ti but no surface water	me of assessment? ☑ dry			
What is the apparen	t hydrologic regime of	the wetland?				
are defined as support	ing surface water for 4-1	1 months of the year (in	<i>oded</i> depressional wetlands n > 5 out of 10 years.) 2 weeks and 4 months of			
perennially flooded	seasonally	flooded 🔽 to	emporarily flooded			

Does your wetland connect with the floodplain of a nearby stream? yes no						
(system subject to overbank flow, a dammed stream does not count)						
Does the wetland have a defined on undefined outlet? defined undefined						
Does the wetland have a defined on undefined inlet? defined undefined						
Are the inlet and outlet at the same location? \Box yes \checkmark no						
Is the topographic basin of the wetland distinct or indistinct ?						

An *indistinct* topographic basin is one that lacks obvious boundaries between wetland and upland. Examples of such features are seasonal, depressional wetlands in very low-gradient landscapes.

Photo Identification Numbers and Description:

Photos should be taken from edge of AA looking toward the centroid of AA

	Photo ID No.	Description	Latitude	Longitude	Datum
1	EastBasin63 _N_1.jpg		33.0109388889	-117.246752778	D_WGS_1984
2	EastBasin63 _S_2.jpg		33.01186666667	-117.246730556	D_WGS_1984

Site Location Description:

Comments:

AA Name: East Basin 63					Date: 2021-10-28	
Attribute 1: Buffer and Lan	dscape	Context			Comments	
			Alpha.	Numeric		
Aquatic Area Abundance (D))		В	9		
Buffer (based on sub-metrics	/	T				
Buffer submetric A:	Alpha.	Numeric				
Percent of AA with Buffer	А	12	4			
Buffer submetric B: Average Buffer Width	А	12				
Buffer submetric C: Buffer Condition	В	9				
Raw Attribute Score =	= D+[C	C x (A x F	$3)^{1/2}]^{1/2}$	19	Final Attribute Score = (Raw Score/24) x 100	80
Attribute 2: Hydrology Attr	ribute (p	р. 16-21)				
W/ / C			Alpha.	Numeric		
Water Source			C	6		
Hyroperiod			А	12		
Hydrologic Connectivity			А	12		
Raw Attribute Score = s	umeric s	scores	30	Final Attribute Score = (Raw Score/36) x 100	84	
Attribute 3: Physical Struct	ture Attri	ibute (pj				
			Alpha.	Numeric		
Structural Patch Richness			D	3		
Topographic Complexity			С	6		
Raw Attribute Score = s	sum of n	umeric s	scores	9	Final Attribute Score = (Raw Score/24) x 100	38
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	29-39)			
Plant Community Compositi	on (based Alpha.	d on sub- Numeric	-metrics A	-C)		
Plant Community Submetric A: Number of plant layers	А	12				
Plant Community submetric B: Number of Co-dominant species	С	6	-			
Plant Community submetric C: Percent Invasion	А	12				
Plant Com (nu	nmunity C meric avera	*		10		
Horizontal Interspersion			В	9		
Vertical Biotic Structure			В	9		
Raw Attribute Score = s	sum of n	umeric s	scores	28	Final Attribute Score = (Raw Score/36) x 100	78
Overall AA Score (avera	ige of for	ır final A	ttribute So	cores)	70	

Scoring Sheet: Depressional Wetlands

Percentage of Transect Aquatic Area of	
Segment Direction	Percentage of Transect Length That is an Aquatic Feature
North	5
South	20
East	50
West	100
Average Percentage of Transect Length that is an Aquatic Feature	44

Worksheet for Aquatic Area Abundance Metric (Method 1)

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerial imagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100 %

Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
E	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	250

Worksheet for calculating average buffer width of AA

Structural Patch Type Worksheet for Depressional Wetlands

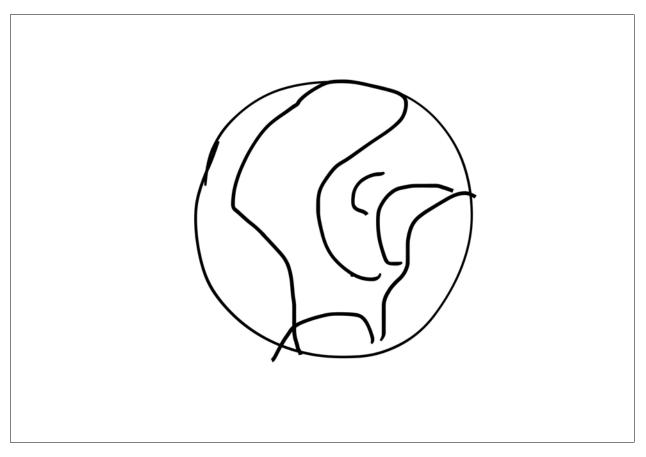
Check each type of patch that is observed in the AA and use the total number of observed patches in Table 15.

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	$3 \mathrm{m}^3$
Abundant wrackl or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	Χ
Bank slumps or undercut banks in channels or along shoreline	
Cobbles and Boulders	
Concentric or parallel high water marks	
Filamentous macroalgae or algal mats	
Islands (mostly above high-water)	
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Open water	
Plant hummocks and/or sediment mounds	
Soil cracks	
Standing snag(s) (1 or more at least 3 m tall)	
Submerged vegetation	
Swales on floodplain or along shoreline	
Variegated, convoluted, or crenulated foreshore	
Woody vegetation in water	
Total Possible	17
No. Observed Patch Types (enter here and use in Table 15 below)	3

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major topographic features, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 7, choose a description in Table 17 that best describes the overall topographic complexity of the AA.

North to South
East to West


Plant Community Metric Worksheet 2 of 8: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?	
		Jaumea carnosa		
		Salicornia pacifica		
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?	
Bolboschoenus maritimus subsp.		Bolboschoenus maritimus subsp.		
paludosus		paludosus		
Very Tall (>1.5 m)	Invasive?			
Juncus acutus subsp. leopoldii		Total number of co-dominant species for		
Typha domingensis		all layers combined	6	
Salix gooddingii		(enter here and use in Table 18)		
		Percent Invastion		
		*Round to the nearest whole number	0	
		(integer)*		

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign names to the zones and record them on the right. Based on the sketch, choose a single profile from Figure 8 that best represents the AA overall.

Wetland disturbances and conversions Worksheet

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood	ood fire landsli		de	other	
If yes, how severe is this disturbance?	affect she		site ne			tely to affect ite next 1-2 years
	depressional		verna	l pool	۲	vernal pool
Has this wetland been converted from another type? If yes, then what was the	non-confined		con	fined		seasonal
previous type?	perennial saline estuarine		1	ial non- stuarine	W	vet meadow
	lacustrine	5	seep or	r spring		playa

Stressor Checklist Worksheet

	Present	effect on AA
oint Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)		
low diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
low obstructions (culverts, paved stream crossings)		
Veir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
ctively managed hydrology		
Comments		

_

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)	Х	
Transportation corridor		
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)		
Active recreation (off-road vehicles, mountain biking, hunting, fishing)	Х	
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		

Basic Information Sheet: Depressional Wetlands

Assessment Area Nar	ne: East Basin 65		
	jo Lagoon Restoration Pr	coject	
Assessment Area ID # Project Site ID #:	7: E-65	Date: 2021-10-28	
,	untrans for this AA	Datc. 2021-10-20	
Assessment Team Me		\sim 1 \sim \sim 1 \sim \sim	
Derrick Mathews, Izzy	Santarsieri (NC), Rachel (Chen, 1ito Marchant (N	(C)
AA Category:			
Pre-Restoration	✓ Post-Restoration	□ Pre-Mitigation	Dest-Mitigation
Pre-Impact	Dest-Impact	□ Training	□ Ambient
□ Reference	□ Other		
Orgin of Wetland (if	known):		
✓ Natural system	□ Artificial system		
Type of Management (if known): □ waterfowl/birds □ amphibians □ general wildlife □ sediment □ water quality □ stormwater □ water supply (agriculture) □ water supply (livestock) ☑ not managed □ other Which best describes the type of depressional wetland? □ freshwater marsh ☑ alkaline marsh □ brackish marsh			
\Box other (specify):			
AA Encompasses:			
entire wetlas	nd 🗹 portio	n of the wetland	
Which best describe	s the hydrologic state of saturated soil,	f the wetland at the ti but no surface water	me of assessment? ☑ dry
What is the apparent	t hydrologic regime of t	the wetland?	
are defined as support	ing surface water for 4-1	1 months of the year (in	<i>oded</i> depressional wetlands n > 5 out of 10 years.) 2 weeks and 4 months of
perennially flooded	\Box seasonally f	looded 🔽 te	emporarily flooded

Does your wetland connect with the floodplain of a nearby stream? yes no				
(system subject to overbank flow, a dammed stream does not count)				
Does the wetland have a defined on undefined outlet? defined undefined				
Does the wetland have a defined on undefined inlet? defined undefined				
Are the inlet and outlet at the same location? \Box yes \checkmark no				
Is the topographic basin of the wetland distinct or indistinct ?				

An *indistinct* topographic basin is one that lacks obvious boundaries between wetland and upland. Examples of such features are seasonal, depressional wetlands in very low-gradient landscapes.

Photo Identification Numbers and Description:

Photos should be taken from edge of AA looking toward the centroid of AA

	Photo ID No.	Description	Latitude	Longitude	Datum
1	EastBasin65 _E_1.jpg		33.0115027778	-117.244669444	D_WGS_1984
2	EastBasin65 _E_2.jpg		33.0115027778	-117.244669444	D_WGS_1984

Site Location Description:

Comments:

AA Name: East Basin 65					Date: 2021-10-28			
Attribute 1: Buffer and Landscape Context (pp. 8-15)					Comments			
		Alpha.	Numeric					
Aquatic Area Abundance (D)		А	12					
Buffer (based on sub-metrics		T						
Buffer submetric A:	Alpha.	Numeric						
Percent of AA with Buffer	А	12						
Buffer submetric B: Average Buffer WidthA12								
Buffer submetric C: Buffer Condition	В	9						
Raw Attribute Score = D+[C x (A x B) ^{1/2}] ^{1/2} 22				22	Final Attribute Score = (Raw Score/24) x 100	92		
Attribute 2: Hydrology Attri	ribute (p	p. 16-21)						
			Alpha.	Numeric				
Water Source			С	6				
Hyroperiod			А	12				
Hydrologic Connectivity			А	12				
Raw Attribute Score = sum of numeric scores 30				30	Final Attribute Score = (Raw Score/36) x 10084			
Attribute 3: Physical Struct	ure Attr	ibute (pj	p. 22-28) Alpha.					
Structural Patch Richness				Numeric 6				
Topographic Complexity			C C	6				
				12	Final Attribute Score = (Raw Score/24) x 100	50		
Attribute 4: Biotic Structur	e Attribu	ite (pp. 2	29-39)					
Plant Community Composition				-С)				
Plant Community Submetric A: Number of plant layers	A	12						
Plant Community submetric B: Number of Co-dominant species	С	6						
Plant Community submetric C: Percent Invasion	А	12						
		ompositio	on Metric	10				
Plant Com	nmunity C meric avera	*		10				
Plant Com (nu.	•	*		9				
Plant Com	•	*	etrics A-C)					
Plant Com <i>(nu</i> Horizontal Interspersion	meric avera	ge of subme	etrics A-C) B C	9	Final Attribute Score = (Raw Score/36) x 100	70		

Scoring Sheet: Depressional Wetlands

Percentage of Transect Lines that Contains Aquatic Area of Any Kind					
Segment Direction	Percentage of Transect Length That is an Aquatic Feature				
North	20				
South	20				
East	55				
West	100				
Average Percentage of Transect Length that is an Aquatic Feature	49				

Worksheet for Aquatic Area Abundance Metric (Method 1)

Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerial imagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100 %

Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
E	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	250

Worksheet for calculating average buffer width of AA

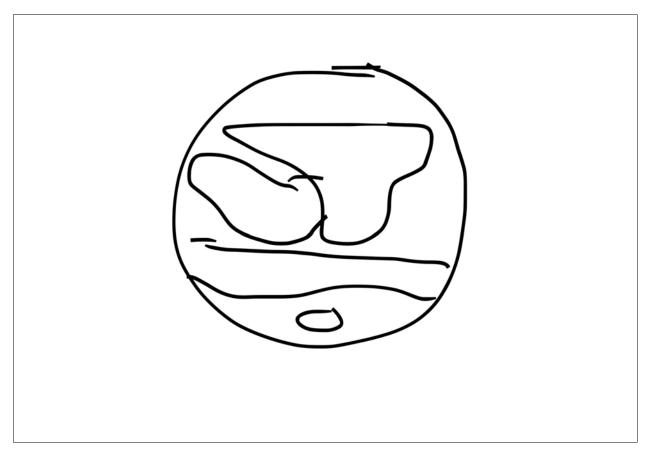
Structural Patch Type Worksheet for Depressional Wetlands

Check each type of patch that is observed in the AA and use the total number of observed patches in Table 15.

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	3 m^3
Abundant wrackl or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	
Bank slumps or undercut banks in channels or along shoreline	
Cobbles and Boulders	
Concentric or parallel high water marks	
Filamentous macroalgae or algal mats	
Islands (mostly above high-water)	
Large Woody Debris	
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	X
Open water	
Plant hummocks and/or sediment mounds	
Soil cracks	Χ
Standing snag(s) (1 or more at least 3 m tall)	
Submerged vegetation	
Swales on floodplain or along shoreline	
Variegated, convoluted, or crenulated foreshore	X
Woody vegetation in water	
Total Possible	17
No. Observed Patch Types (enter here and use in Table 15 below)	4

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major topographic features, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 7, choose a description in Table 17 that best describes the overall topographic complexity of the AA.


Plant Community Metric Worksheet 2 of 8: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Frankenia salina	
		Jaumea carnosa	
		Salicornia pacifica	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
		Juncus acutus subsp. leopoldii	
		Schoenoplectus californicus	
		-	
Very Tall (>1.5 m)	Invasive?		
Salix gooddingii		Total number of co-dominant species for	
		all layers combined	6
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign names to the zones and record them on the right. Based on the sketch, choose a single profile from Figure 8 that best represents the AA overall.

Wetland disturbances and conversions Worksheet

Has a major disturbance occured at this wetland?	Yes		No				
If yes, was it a flood, fire, landslide or other?	flood		fire landsl		de	other	
If yes, how severe is this disturbance?	likely to affect site next 5 or more year	e :	likely to affect site next 3-5 years		likely to affect site next 1-2 years		
	depression	nal	verna	ıl pool	۲	vernal pool	
Has this wetland been converted from another type? If yes, then what was the previous type?	non-confined		confined			seasonal	
	perennial saline estuarine		perennial non- saline estuarine		W	vet meadow	
	lacustrine	2	seep or	r spring		playa	

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)		
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		

Filling or dumping of sediment or soils (N/A for restoration areas) Grading/ compaction (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Similary compaction (17/11/01 restonation areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management	Х	
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse	Х	
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA	
Urban residential	Х		
Industrial/commercial			
Military training/Air traffic			
Dams (or other major flow regulation or disruption)			
Dryland farming			
Intensive row-crop agriculture			
Orchards/nurseries			
Commercial feedlots			
Dairies			
Ranching (enclosed livestock grazing or horse paddock or feedlot)	Х		
Transportation corridor	Х		
Rangeland (livestock rangeland also managed for native vegetation)			
Sports fields and urban parklands (golf courses, soccer fields, etc.)			
Passive recreation (bird-watching, hiking, etc.)			
Active recreation (off-road vehicles, mountain biking, hunting, fishing)			
Physical resource extraction (rock, sediment, oil/gas)			
Biological resource extraction (aquaculture, commercial fisheries)			
Comments			

Basic Information Sheet: Depressional Wetlands

Assessment Area Name: East Basin 75						
Project Name: San Elijo Lagoon Restoration Project						
Assessment Area ID # Project Site ID #:	F: E-/5	Date: 2021-10-28				
Assessment Team Me	unale and fair this A A	Date: 2021-10-20				
Izzy Santarsieri (NC), R	acher Chen					
AA Category:						
□ Pre-Restoration	✓ Post-Restoration	□ Pre-Mitigation	Dest-Mitigation			
Pre-Impact	Dest-Impact	□ Training	□ Ambient			
□ Reference	□ Other					
Orgin of Wetland (if	known):					
✓ Natural system	□ Artificial system					
☐ water supply (agricu Which best describe	amphibians	ivestock) √ not manage nal wetland?				
freshwater marshother (specify):	n ☑ alkaline marsh	□ brackish marsł	1			
AA Encompasses:						
🗌 entire wetlar	nd 🗹 portio	on of the wetland				
Which best describes the hydrologic state of the wetland at the time of assessment? ponded/innundated saturated soil, but no surface water dry						
What is the apparent	t hydrologic regime of	the wetland?				
<i>Perennially flooded</i> systems contain surface water year-round, <i>seasonally flooded</i> depressional wetlands are defined as supporting surface water for 4-11 months of the year (in > 5 out of 10 years.) <i>Temporarily flooded</i> depressional wetlands possess surface water between 2 weeks and 4 months of the year.						
perennially flooded	seasonally f	flooded 🔽 te	emporarily flooded			

Does your wetland connect with the floodplain of a nearby stream?yesno(system subject to overbank flow, a dammed stream does not count)				
Does the wetland have a defined on undefined outlet? defined undefined				
Does the wetland have a defined on undefined inlet? defined undefined				
Are the inlet and outlet at the same location?				
Is the topographic basin of the wetland distinct or indistinct ?				

An *indistinct* topographic basin is one that lacks obvious boundaries between wetland and upland. Examples of such features are seasonal, depressional wetlands in very low-gradient landscapes.

Photo Identification Numbers and Description:

Photos should be taken from edge of AA looking toward the centroid of AA

	Photo ID No.	Description	Latitude	Longitude	Datum
1	EastBasin75 _SW_1.jpg	SW	33.0104194444	-117.243352778	D_WGS_1984
2	EastBasin75 _NW_2.jpg	NW	33.0101583333	-117.242813889	D_WGS_1984

Site Location Description:

Comments:

				Date: 2021-10-28	
ndscape	Context	(pp. 8-15)		Comments	
		Alpha.	Numeric		
)		А	12		
	1	_			
Alpha.	Numeric				
А	12				
А	12				
В	9				
= D+[C	C x (A x E	$3)^{1/2}]^{1/2}$	22	Final Attribute Score = (Raw Score/24) x 100	92
ribute (p	p. 16-21)				
		А	12		
sum of n	umeric s	scores	30	Final Attribute Score = (Raw Score/36) x 100	84
ture Attri	ibute (pj		1		
			3		
		С	6		
sum of n	umeric s	scores	9	Final Attribute Score = (Raw Score/24) x 100	38
e Attribu	ite (pp. 2	29-39)			
		metrics A	-C)		
Alpha.	Numeric				
А	12				
В	9				
А	12				
			11		
	- •	A	12		
		C	6		
		С	0		
sum of n	umeric s		29	Final Attribute Score = (Raw Score/36) x 100	81
	s A-C) Alpha. A A B = D+[C ribute (p sum of n ture Attribution (based Alpha. A B A A A A A A A A A A A A A	s A-C) Alpha. Numeric A 12 A 12 B 9 = D+[C x (A x B ribute (pp. 16-21) sum of numeric s ture Attribute (pp. sum of numeric s ture Attribute (pp. 2) ion (based on sub- Alpha. Numeric A 12 B 9 A 12	Alpha. Alpha. Alpha. Alpha. Alpha. Alpha. Alpha. Alpha. Alpha. Alpha. Alpha. B 9 = D+[C x (A x B) ^{1/2}] ^{1/2} ribute (pp. 16-21) Alpha. C A A A Sum of numeric scores ture Attribute (pp. 22-28) Alpha. D C sum of numeric scores ture Attribute (pp. 29-39) ion (based on sub-metrics A Alpha. Numeric A 12 B 9	Alpha.NumericA12A-C)Alpha.NumericA12A12A12B9= D+[C x (A x B) ^{1/2}] ^{1/2} 22Alpha.NumericC6A12A12A12A12Alpha.NumericC6A12Alpha.Numeric scores30Alpha.Numeric D3C6sum of numeric scores9C6sum of numeric scores9cAD3C6sum of numeric scores9cAAlpha.NumericD3C6sum of numeric scores9cAB9A12B9A12nmunity Composition Metric11	Alpha.NumericA12A-C)AAlpha.NumericA12A12B9= D+[C x (A x B) ^{1/2}] ^{1/2} 22Final Attribute Score = (Raw Score/24) x 100ribute (pp. 16-21) A 12Alpha.NumericC6A12Sum of numeric scores30Sum of numeric scores30C6Alpha.NumericD3C6sum of numeric scores9Final Attribute Score = (Raw Score/36) x 100ture Attribute (pp. 22-28)ion (based on sub-metrics A-C)Alpha.NumericAlpha.NumericAlpha.NumericAlpha.NumericB9A12B9A12munuity Composition Metric11

Scoring Sheet: Depressional Wetlands

Percentage of Transect Lines that Contains Aquatic Area of Any Kind				
Segment Direction	Percentage of Transect Length That is an Aquatic Feature			
North	50			
South	0			
East	50			
West	100			
Average Percentage of Transect Length that is an Aquatic Feature	50			

Worksheet for Aquatic Area Abundance Metric (Method 1)

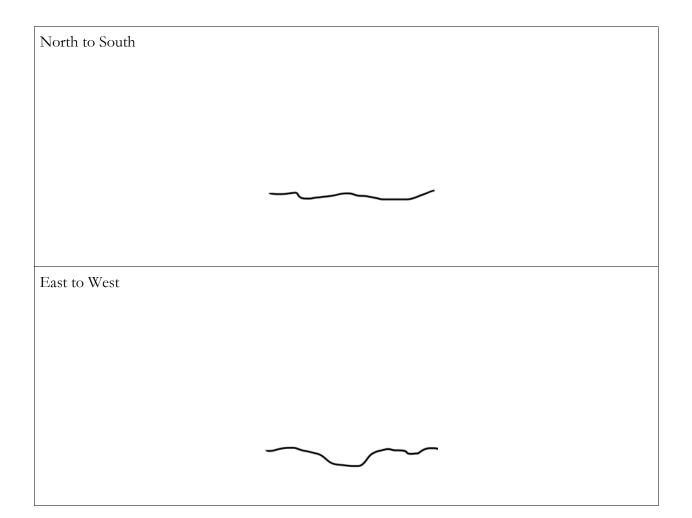
Percent of AA with Buffer Worksheet

In the space provided below make a quick sketch of the AA, or perform the assessment directly on the aerial imagery; indicate where buffer is present, estimate the percentage of the AA perimeter providing buffer functions, and record the estimate amount in the space provided.

Percent of AA with Buffer: 100 %

Line	Buffer Width (m)
Α	250
В	250
С	250
D	250
E	250
F	250
G	250
Н	250
Average Buffer Width *Round to the nearest integer*	250

Worksheet for calculating average buffer width of AA

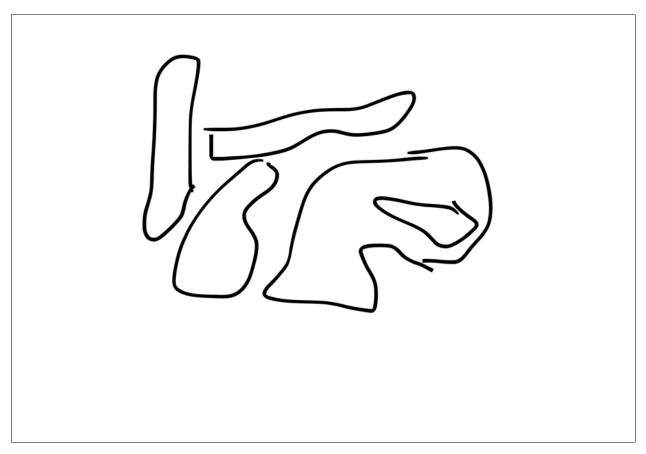

Structural Patch Type Worksheet for Depressional Wetlands

Check each type of patch that is observed in the AA and use the total number of observed patches in Table 15.

STRUCTURAL PATCH TYPE	Estuarine
Minimum Patch Size	$3 \mathrm{m}^3$
Abundant wrackl or organic debris in channel, on floodplain, or across depressional wetland plain	X
Animal mounds and burrows	
Bank slumps or undercut banks in channels or along shoreline	
Cobbles and Boulders	
Concentric or parallel high water marks	
Filamentous macroalgae or algal mats	
Islands (mostly above high-water)	
Large Woody Debris	Χ
Non-vegetated flats or bare ground (sandflats, mudflats, gravel flats, etc.)	
Open water	
Plant hummocks and/or sediment mounds	
Soil cracks	
Standing snag(s) (1 or more at least 3 m tall)	Χ
Submerged vegetation	
Swales on floodplain or along shoreline	
Variegated, convoluted, or crenulated foreshore	
Woody vegetation in water	
Total Possible	17
No. Observed Patch Types (enter here and use in Table 15 below)	3

Worksheet for AA Topographic Complexity

At two locations in the AA, make a sketch of the profile from the AA boundary to AA boundary. Try to capture the major topographic features, slopes and intervening micro-topographic relief. Based on these sketches and the profiles in Figure 7, choose a description in Table 17 that best describes the overall topographic complexity of the AA.


Plant Community Metric Worksheet 2 of 8: Co-dominant species richness (A dominant species represents ≥10% *relative* cover)

* Combine the counts of co-dominant species from all layers to identify the total species count. Each plant species is only counted once when calculating the Number of Co-dominant Species and Percent Invasion submetric scores, regardless of the numbers of layers in which it occurs.

Floating or Canopy-forming	Invasive?	Short (<0.3 m)>	Invasive?
		Frankenia salina	
		Jaumea carnosa	
		Malvella leprosa	
		Salicornia pacifica	
Medium (0.3 - 0.75m)	Invasive?	Tall (0.75 - 1.5m)	Invasive?
Ambrosia psilostachya		Isocoma menziesii	
		Typha latifolia	
Very Tall (>1.5 m)	Invasive?		
Salix sp.		Total number of co-dominant species for	
		all layers combined	8
		(enter here and use in Table 18)	
		Percent Invastion	
		*Round to the nearest whole number	0
		(integer)*	

Horizontal Interspersion Complexity Worksheet.

Use the spaces below to make a sketch of the AA in plan view, outlining the major plant zones (this should take no longer than 10 minutes). Assign names to the zones and record them on the right. Based on the sketch, choose a single profile from Figure 8 that best represents the AA overall.

Wetland disturbances and conversions Worksheet

Has a major disturbance occured at this wetland?	Yes		No			
If yes, was it a flood, fire, landslide or other?	flood		fire	landsli	de	other
If yes, how severe is this disturbance?	likely to affect site next 5 or more year	e :	likely to affect site next 3-5 years		likely to affect site next 1-2 years	
Has this wetland been converted from another type? If yes, then what was the previous type?	depressional		vernal pool		۲	vernal pool
	non-confined		confined		seasonal	
	perennial saline estuarine		perennial non- saline estuarine		W	vet meadow
	lacustrine	2 C	seep o	r spring		playa

Stressor Checklist Worksheet

HYDROLOGY ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Point Source (PS) discharges (POTW, other non-stormwater discharge)		
Non-point Source (Non-PS) discharges (urban runoff, farm drainage)	Х	
Flow diversions or unnatural inflows		
Dams (reservoirs, detention basins, recharge basins)		
Flow obstructions (culverts, paved stream crossings)		
Weir/drop structure, tide gates		
Dredged inlet/channel		
Engineered channel (riprap, armored channel bank, bed)		
Dike/levees		
Groundwater extraction		
Ditches (borrow, agricultural drainage, mosquito control, etc.)		
Actively managed hydrology		
Comments		
Comments		- I

PHYSICAL STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Filling or dumping of sediment or soils (N/A for restoration areas)		
Grading/ compaction (N/A for restoration areas)		
Plowing/Discing (N/A for restoration areas)		
Resource extraction (sediment, gravel, oil and/or gas)		
Vegetation management	Х	
Excessive sediment or organic debris from watershed		
Excessive runoff from watershed		
Nutrient impaired (PS or Non-PS pollution)		
Heavy metal impaired (PS or Non-PS pollution)		
Pesticides or trace organics impaired (PS or Non-PS pollution)		
Bacteria and pathogens impaired (PS or Non-PS pollution)		
Trash or refuse		
Comments		

BIOTIC STRUCTURE ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Mowing, grazing, excessive herbivory (within AA)		
Excessive human visitation		
Predation and habitat destruction by non-native vertebrates (e.g.,		
Tree cutting/sapling removal		
Removal of woody debris		
Treatment of non-native and nuisance plant species		
Pesticide application or vector control		
Biological resource extraction or stocking (fisheries, aquaculture)		
Excessive organic debris in matrix (for vernal pools)		
Lack of vegetation management to conserve natural resources		
Lack of treatment of invasive plants adjacent to AA or buffer		
Comments		

BUFFER AND LANDSCAPE CONTEXT ATTRIBUTE (WITHIN 50 M OF AA)	Present	Significant negative effect on AA
Urban residential	Х	
Industrial/commercial		
Military training/Air traffic		
Dams (or other major flow regulation or disruption)		
Dryland farming		
Intensive row-crop agriculture		
Orchards/nurseries		
Commercial feedlots		
Dairies		
Ranching (enclosed livestock grazing or horse paddock or feedlot)	Х	
Transportation corridor	Х	
Rangeland (livestock rangeland also managed for native vegetation)		
Sports fields and urban parklands (golf courses, soccer fields, etc.)		
Passive recreation (bird-watching, hiking, etc.)	Х	
Active recreation (off-road vehicles, mountain biking, hunting, fishing)		
Physical resource extraction (rock, sediment, oil/gas)		
Biological resource extraction (aquaculture, commercial fisheries)		
Comments		